Secure Parameters for SWIFFT
- Extended Abstract -

Johannes Buchmann and Richard Lindner

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany
buchmann,rlindner@cdc.informatik.tu-darmstadt.de

Abstract. The SWIFFT compression functions, proposed by Lyubashevsky et al. at FSE 2008, are very efficient instantiations of generalized compact knapsacks for a specific set of parameters. They have the property that, asymptotically, finding collisions for a randomly chosen compression function implies being able to solve computationally hard ideal lattice problems in the worst-case.

We present three results. First, we present new average-case problems, which may be used for all lattice schemes whose security is proven with the worst-case to average-case reduction in either general or ideal lattices. The new average-case problems require less description bits, resulting in improved keysize and speed for these schemes. Second, we propose a parameter generation algorithm for SWIFFT where the main parameter \(n \) can be any integer in the image of Euler’s totient function, and not necessarily a power of 2 as before. Third, we give experimental evidence that finding pseudo-collisions\(^1\) for SWIFFT is as hard as breaking a 68-bit symmetric cipher according to the well-known heuristic by Lenstra and Verheul. We also recommend conservative parameters corresponding to a 127-bit symmetric cipher.

Keywords: post-quantum cryptography, hash functions, lattices.

1 Introduction

Collision-resistant hash functions play a key role in the IT world. They are an important part of digital signatures as well as authentication protocols.

Despite their fundamental importance, several established hash designs have turned out to be insecure, for example MD5 and SHA-1 \([24,6]\). To avoid this lack of security in a central place for the future, we need efficient hash functions with strong security guarantees.

One such hash function with an intriguing design is SWIFFTX \([2]\). In contrast to all other practical hash functions, including all SHA-3 candidates, it remains the only hash function, where the most prominent security property, namely collision-resistance relies solely on the hardness of a well studied mathematical

\(^1\) These pseudo-collisions were named by the SWIFFT authors and are not related to the usual pseudo-collisions as defined in e.g. the Handbook of Applied Cryptography.
problem. This guarantee on the collision-resistance of SWIFFTX is a feature derived directly from SWIFFT [17], the internal compression function, which has the same guarantee.

SWIFFTX was part of a hash design competition by the National Institute for Standards and Technology (NIST). It did not survive the competition, and we suspect this is due to inefficiency, with the main bottleneck being SWIFFT.

Our paper has three contributions. First, we show that SWIFFT is even less efficient than asserted by the authors, because their security analysis against lattice-based attacks is too optimistic. We will show that sublattice attacks are possible and analyze the implications on practical parameters.

Second, we present a variant of SWIFFT that is more efficient, since its collision-resistance can be reduced from a new average-case problem which requires less description bits, but can still be used to solve the same worst-case problems that were used before. This improvement to space and time requirements applies universally to all lattice-schemes based on worst-case problems via Ajtai’s reduction (e.g. [10,9,17,16,25]).

Third, we present the smallest parameter set for SWIFFT which gives 100-bit symmetric security according to the heuristic by Lenstra and Verheul [14], it does in fact give 127-bit.

The paper is organized as follows. Section 2 deals with basics about lattices. Section 3 introduces the new average-case problems and reductions from SIS. Section 4 describes the SWIFFT compression function family. Section 5 presents the parameter generation algorithm and Section 6 discusses SWIFFT’s security.

2 Preliminaries

A lattice Λ is a discrete, additive subgroup of \mathbb{R}^n. It can always be described as $\Lambda = \{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \}$, where $b_1, \ldots, b_d \in \mathbb{R}^n$ are linearly independent. The matrix $B = [b_1, \ldots, b_d]$ is a basis of Λ and we write $\Lambda = \Lambda(B)$. The number of vectors in the basis is the dimension of the lattice.

For each basis B there is a decomposition $B = B^* \mu$, where B^* is orthogonal and μ is upper triangular. The decomposition is uniquely defined by these rules

$$\mu_{j,i} = \langle b_i, b_j^* \rangle / \| b_j^* \|^2, \quad b_i = \mu_{1,i} b_1^* + \cdots + \mu_{i-1,i} b_{i-1}^* + b_i^*, \quad 1 \leq j \leq i \leq n.$$

It can be computed efficiently with the Gram-Schmidt process and B^* is the Gram-Schmidt Orthogonalization (GSO) of B.

Conforming with notations in previous works, we will write vectors and matrices in boldface. Special tuples of vectors will be denoted with a hat (for an example see Section 4). The residue class ring $\mathbb{Z}/\langle q \rangle$ is denoted \mathbb{Z}_q.

3 Two average-case problems

In this section we present a new average-case problem SIS’. We show that the average-case small integer solution problem (SIS) reduces to SIS’. So, SIS’ can be
used, for example, to solve worst-case problems that reduce to SIS without any loss in the parameters. The advantage is that SIS’ requires $n^2 \log(q)$ less random bits. A similar construction is possible for the average-case problem LWE and has indeed been suggested (without naming it or proving reductions) by Regev and Micciancio in [18].

All cryptographic schemes, whose security relies on SIS, can switch to SIS’ resulting in a scheme with smaller keys, which is also slightly faster (due to the structure of SIS’). This includes all systems based on worst-case lattice problems via Ajtai’s reduction [1] or the adaptions thereof (e.g. [10,9]).

We will also show that the same idea can be adapted to the IdealSIS problem, which is SIS restricted to the class of ideal lattices. The number of description bits we save in this case is $n \log(q)$. So, all schemes based on worst-case problems in ideal lattices via the reduction of Lyubashevsky and Micciancio [16] can benefit from using IdealSIS’ (e.g. [17,16,25,23]). How these improvements apply to SWIFFT may be seen in Section 4.1.

The technical difference is that SIS chooses a somewhat random basis for a random lattice, whereas SIS’ chooses only a random lattice and takes the basis in Hermite normal form. This is analogous to using the standard form for linear codes in coding theory.

Definition 1 (SIS). Given integers n, m, q, a matrix $A \in \mathbb{Z}_{q}^{n \times m}$, and a real β, the small integer solution problem (in the ℓ_r norm) is to find a nonzero vector $z \in \mathbb{Z}_{q}^m \setminus \{0\}$ such that

$$z \in A_{q}^{\perp}(A) = \{z \in \mathbb{Z}_{q}^m \mid Az = 0 \pmod{q}\} \quad \text{and} \quad \|z\|_r \leq \beta.$$

We will now define two probability ensembles over SIS instances and show that these are essentially equivalent.

Definition 2. For any functions $q(n), m(n), \beta(n)$ let

$$\text{SIS}_{q(n), m(n), \beta(n)} = \{(q(n), U(\mathbb{Z}_{q(n)}^{n \times m(n)}), \beta(n))\}_n$$

be the probability ensemble over SIS instances $(q(n), A, \beta(n))$, where A is chosen uniformly at random from all $n \times m(n)$ integer matrices modulo $q(n)$. Alternatively let

$$\text{SIS}_q^{\prime}(n), m(n), \beta(n) = \{(q(n), [I_n, U(\mathbb{Z}_{q(n)}^{n \times (m(n) - n)})], \beta(n))\}_n$$

be the probability ensemble over SIS instances $(q(n), A, \beta(n))$, where A is an n-dimensional identity matrix concatenated with a matrix chosen uniformly at random from all $n \times (m(n) - n)$ integer matrices modulo $q(n)$.

Theorem 1. Let $n, q(n) \geq 2, m(n) \geq (1 + \epsilon)n$ be positive integers, and $\beta(n) > 0$ be a positive real, then $\text{SIS}_{q,m,\beta}$ reduces to $\text{SIS}_q^{\prime}, m, \beta$. Here, $\epsilon > 0$ is some real number independent of n.
The proof is given in Appendix A.

In the remainder of the section we will adopt Theorem 1 to the case of ideal lattices. Throughout this part, let ζ_n be a sequence of algebraic integers, such that the ring $R_n = \mathbb{Z}[\zeta_n]$ is a \mathbb{Z}-module of rank n, i.e. $R_n \cong \mathbb{Z}^n$ as an additive group. Since $R_n = [1, \zeta_n, \ldots, \zeta_n^{n-1}] \mathbb{Z}^n$, we can use any ℓ_r norm on ring elements, by transforming them to integral coefficient vectors of this power basis. In order to apply ℓ_r norms on tuples of ring elements, we take the norm of the vector consisting of the norms of each element, so for $\hat{z} \in R_n^m$ we have $\|\hat{z}\|_r = \|(\|z_1\|_r, \ldots, \|z_m\|_r)\|_r$. We use the shorthand $R_n,q = R_n / \langle q \rangle = \mathbb{Z}_q[\zeta_n]$.

Definition 3 (IdealSIS). Given integers n, m, q, a tuple $\hat{a} = [a_1, \ldots, a_m] \in R_{n,q}^m$, and a real β, the ideal shortest vector problem (in the ℓ_r norm) is to find a nonzero vector $\hat{z} = [z_1, \ldots, z_m] \in R_n^m \setminus \{0\}$, such that

$$\hat{z} \in A_q^{-1}(\hat{a}) = \{ \hat{z} \in R_n^m \mid \sum_{i=1}^m a_i z_i = 0 \pmod{q} \}$$

and $\|\hat{z}\|_r \leq \beta$.

Analogous to the case of general lattices, we have two probability ensembles.

Definition 4. For any functions $q(n), m(n), \beta(n)$ let

$$\text{IdealSIS}_{q(n),m(n),\beta(n)} = \{(q(n), U(R_n^{m(n)}), \beta(n))\}_n$$

be the probability ensemble over IdealSIS instances $(q(n), \hat{a}, \beta(n))$, where \hat{a} is chosen uniformly at random from all $m(n)$ tuples of ring elements modulo $q(n)$.

Alternately let

$$\text{IdealSIS}'_{q(n),m(n),\beta(n)} = \{(q(n), [1, U(R_n^{m(n)-1})], \beta(n))\}_n$$

be the probability ensemble over IdealSIS instances $(q(n), \hat{a}, \beta(n))$, where \hat{a} is a 1 concatenated with a tuple chosen uniformly at random from all $(m(n) - 1)$ tuples of ring elements modulo $q(n)$.

Theorem 2. Let $n, m(n) \in \Omega(\log(n))$ be positive integers, $q(n) \in \omega(n)$ be prime, and $\beta(n) > 0$ be real, then $\text{IdealSIS}_{q,m,\beta}$ reduces to $\text{IdealSIS}'_{q,m,\beta}$.

The proof is similar to the one before and can be found in Appendix B.

4 SWIFFT compression functions

The SWIFFT compression function family was proposed by Lyubashevsky et al. at FSE 2008 [17]. They showed that for one set of parameters, its efficiency is comparable to SHA-2, while its collision resistance is asymptotically based on worst-case computational problems in ideal lattices.
Specifically, for a set of integer parameters \((n, m, p)\), in their case \((64, 16, 257)\), they use the polynomial \(f(x) = x^n + 1\), the ring \(R_{p,n} = \mathbb{Z}_p[x]/\langle f \rangle\), and the subset \(D_n = \{0, 1\}[x]/\langle f \rangle\) to define the family

\[
\mathcal{H}_{n,m,p} = \left\{ h_{\hat{a}} : D_n^m \ni \hat{x} \mapsto \sum_{i=1}^{m} a_i x_i \pmod{p} \mid (a_1, \ldots, a_m) = \hat{a} \in R_{p,n}^m \right\}.
\]

These functions can be computed efficiently. Let \(\omega_0, \ldots, \omega_{n-1}\) be the roots of \(f\) in \(\mathbb{Z}_p\) in any order, and \(V\) be the Vandermonde matrix generated by them

\[
V = \begin{pmatrix}
1 & \omega_0 & \ldots & \omega_0^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & \omega_{n-1} & \ldots & \omega_{n-1}^{n-1}
\end{pmatrix}.
\]

Applying the Fast Fourier Transform over \(\mathbb{Z}_p\) to SWIFFT we get

\[
z \equiv \sum_{i=0}^{m-1} a_i x_i \pmod{f} \equiv V^{-1} \left(\sum_{i=0}^{m-1} V a_i \odot V x_i \right) \pmod{p},
\]

where \(\odot\) is the pointwise multiplication in \(\mathbb{Z}_p^m\). Since \(V\) is invertible, we may use \(z' = Vz\) as hash, instead of \(z\). Since the compression function key \(\hat{a}\) is fixed, we may precompute \(a'_i = Va_i\) for all \(i\). So evaluating the compression function amounts to computing all \(n\) components of \(z'\) with

\[
z'_j = \sum_{i=0}^{m-1} a'_{i,j} x'_{i,j} \pmod{p}, \quad x'_{i,j} = \sum_{l=0}^{n-1} \omega_l^j x_{i,l} \pmod{p}.
\]

Due to the form of \(f\) we can set \(\omega_j \leftarrow \omega^{2j+1}\) for any element \(\omega\) of order \(2n\) in \(\mathbb{Z}_p\).

We insert the parameters and split up the indices \(j = j_0 + 8j_1\) and \(l = l_0 + 8l_1\).

\[
x'_{i,j_0+8j_1} = \sum_{l_0=0}^{7} \sum_{l_1=0}^{7} \omega^{(l_0+8l_1)(2j_0+8j_1+1)} x_{i,l_0+8l_1} \pmod{p}
\]

\[
= \sum_{l_0=0}^{7} \omega^{16l_0j_1} \cdot \omega^{l_0(2j_0+1)} \sum_{l_1=0}^{7} \omega^{8l_1(2j_0+1)} x_{i,l_0+8l_1} \pmod{p}
\]

The quantities \(t_{l_0,j_0}\) for all \(2^8\) possible \(x_{i,l_0+8l_1}\) and \(m_{l_0,j_0}\) can be precomputed. The SWIFFT authors recommend using \(\omega = 42\), because then \(\omega^{16} \pmod{p} = 4\), so some multiplications in the last expression can be realized with bit-shifts. A single \(x'_{i,j}\), i.e. the last expression for all \(j\), can then be evaluated with a total of 64 multiplications, \(8 \cdot 24\) additions/subtractions using an FFT network. The total number of operations (ignoring index-calculations and modular reduction)
for the standard SWIFFT parameters is

\[16 \cdot 64 + 16 \cdot 64 = 2048 \text{ multiplications} \]

\[16 \cdot 8 \cdot 24 + 16 \cdot 64 - 1 = 4095 \text{ additions/subtractions} \]

Lyubashevsky and Micciancio showed in [15] that asymptotically these compression functions are collision resistant, as long as standard lattice problems in lattices corresponding to ideals of \(\mathbb{Z}[x]/(f) \) are hard in the worst-case. The arguments given later by Peikert and Rosen in [19] can also be adapted to prove collision resistance of SWIFFT with a tighter connection to the same worst-case problem.

4.1 More parameters

Let \(k > 0 \) be some integer, \(p \) be prime and \(n = \varphi(k) \), where \(\varphi \) is Euler’s totient function. Furthermore, let \(f \) be the \(k \)th cyclotomic polynomial, which is monic, irreducible over the integers, and has degree equal to \(n \). Using the same structures as above, i.e. the ring \(R_{p,n} = \mathbb{Z}_p[x]/(f) \), and subset \(D_n = \{0,1\}[x]/(f) \) with this new \(f \), we can construct the same compression function family as above and the asymptotic security argument given in [19,15] still holds. In order to apply FFT as before, we need to ensure that elements of order \(k \) exist in \(\mathbb{Z}_p \). This is guaranteed whenever \(k \mid (p - 1) \).

Optimizations similar to the ones available for SWIFFT in this more general setting are still an area of investigation. We show how this can be done specifically for the parameters we recommend in Section 5.1.

For arbitrary parameters, we found that using additions in a logarithmic table instead of multiplications in \(\mathbb{Z}_p \) is comparable in speed to the normal multiplication and special bit shifting reduction modulo 257 used in SWIFFT.

Another very general optimization follows from the observations given in Section 3. Using functions from the set

\[\mathcal{H}'_{n,m,p} = \left\{ h_{\tilde{a}} : D_n^m \ni \tilde{x} \mapsto x_1 + \sum_{i=1}^{m-1} a_i x_{i+1} \quad (\text{mod } p) \quad | \quad (a_1, \ldots, a_{m-1}) = \tilde{a} \in R_{p,n}^{m-1} \right\} \]

results in a slightly more efficient scheme, which uses less memory. Recall that all entries in \(\tilde{a}' \) can be precomputed in practice and having one of them equal \(1 \) saves some multiplications during evaluation depending on the implementation. In Equation (1), if we would computed \(z \) instead of \(z' \) the speed-up is \(1/m \). For \(m = 16 \) this is \(\approx 6\% \) and it may be further increased with the sliding window method used for NTRU [3]. However, at the moment it is more efficient to compute \(z' \). In this case we save \(n \) multiplications, which is about \(1\% \) of all operations for standard SWIFFT parameters.

We believe that optimizations are easiest to find in the cases where \(k \) is prime or a power of two. Focusing on these two special cases, we can already see
much more variety in the choice of parameters. See Table 1 for comparison of parameters where \(n \) is between 64 and 128.

4.2 SWIFFT lattice

Let \(\hat{a} \in \mathbb{R}^{p,n} \). Consider the function \(h_{\hat{a}} \in \mathcal{H}_{n,m,p} \) and extended the domain to \(R_n = \mathbb{Z}[x]/(f) \). The coefficient vectors of periods of this function form the set

\[
A_p(\hat{a}) = \left\{ (x_1, \ldots, x_{nm}) \in \mathbb{Z}^{nm} \mid h_{\hat{a}} \left(\sum_{i=0}^{n-1} x_{i+1} x^i, \ldots, \sum_{i=0}^{n-1} x_{m(i+1)} x^i \right) = 0 \right\}.
\]

This is a lattice of dimension \(nm \), since the extended \(h_{\hat{a}} \) is \(R_n \)-linear. A basis for this lattice can be found efficiently using a method described by Buchmann et al. [4]. Collisions in the original (unextended) function \(h_{\hat{a}} \) correspond exactly to vectors in this lattice with \(\ell_\infty \)-norm bounded by 1. Therefore we refer to these lattices as SWIFFT lattices.

A pseudo-collision is a vector in this lattice with Euclidean norm less than \(\sqrt{nm} \), i.e. all vectors in the smallest ball containing all collisions. So every collision is a pseudo-collision, but not vice versa.

5 Parameter generation

We now describe an algorithm for generating parameter sets \((n, m, p)\) for the SWIFFT compression function families in Section 4. For the polynomial \(f \) we will use the \(k \)th cyclotomic polynomial, such that \(n = \varphi(k) \). If multiple polynomials are possible, we choose the one, where the resulting bitlength of the output is shorter, i.e. the one with smaller \(p \). For example, if \(n + 1 \) is prime, we will use the polynomial \(f(x) = x^n + x^{n-1} + \cdots + 1 \), and if \(n \) is a power of two, we will use the polynomial \(f(x) = x^n + 1 \).

Input: Integer \(n \), s.t. \(n = \varphi(k), k > 0 \)

Output: Parameters \((n, m, p)\)

\[
l \leftarrow 1 \\
p \leftarrow k + 1 \\
\text{while not isPrime}(p) \text{ do} \\
\quad l \leftarrow l + 1 \\
\quad p \leftarrow l \cdot k + 1 \\
\text{end} \\
m \leftarrow \lceil 1.99 \cdot \log_2(p) \rceil
\]

Algorithm 1: Parameter generation for \(n = \varphi(k), k > 0 \).

For each set of parameters, we may additionally compute the output bitlength \(\text{out} = n(\lfloor \log_2(p) \rfloor + 1) \), the compression rate \(\text{cr} = m / \log_2(p) \), the Hermite factor
\[δ \text{ required for finding pseudo-collisions, and the minimal dimension } d \text{ where we can expect to find pseudo-collisions. These values are listed in Table 1.} \]

The two latter values \(δ \) and \(d \) are computed in the following fashion. Consider the function \(\text{len}(d) = p^{n/d} \delta^d \). According to an analysis by Gama and Nguyen [8]\(^2\) this is the Euclidean size of the smallest vector we are likely to find when reducing a sublattice with dimension \(d \) of any SWIFFT lattice \(\Lambda_p(\tilde{a}) \). Micciancio and Regev observed in [18] that this function takes its minimal value

\[\text{len}(d_{\text{min}}) = δ^2 \sqrt{n \log(p) / \log(δ)} \quad \text{for} \quad d_{\text{min}} = \sqrt{n \log(p) / \log(δ)}. \]

A pseudo-collision is a vector in \(\Lambda_p(\tilde{a}) \) with Euclidean norm \(\sqrt{nm} \). In order to find such a vector, we need a \(δ \), s.t. \(\text{len}(d_{\text{min}}) = \sqrt{nm} \). We say this is the Hermite factor required for finding pseudo-collisions, and the corresponding \(d_{\text{min}} \) is the minimal dimension, where we can expect to find a pseudo-collision. Note that these minimal dimensions, which we will work in are about 5 times smaller than the corresponding dimensions of the SWIFFT lattices. To give an intuition, Gama and Nguyen state that the best lattice reduction algorithms known today can achieve a Hermite factor of roughly \(δ = 1.01 \) in high dimension within acceptable time.

5.1 Recommended parameters

We will give arguments in Section 6.2 that parameters with \(d \geq 260 \) correspond to SWIFFT instances, where finding pseudo-collisions is at least as hard as

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n)</th>
<th>(m)</th>
<th>(p)</th>
<th>(\text{out})</th>
<th>(\text{cr})</th>
<th>(\delta)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>16</td>
<td>257</td>
<td>513</td>
<td>1.999</td>
<td>1.0084</td>
<td>206</td>
</tr>
<tr>
<td>67</td>
<td>66</td>
<td>17</td>
<td>269</td>
<td>529</td>
<td>2.106</td>
<td>1.0084</td>
<td>211</td>
</tr>
<tr>
<td>71</td>
<td>70</td>
<td>19</td>
<td>569</td>
<td>631</td>
<td>2.076</td>
<td>1.0073</td>
<td>248</td>
</tr>
<tr>
<td>73</td>
<td>72</td>
<td>17</td>
<td>293</td>
<td>577</td>
<td>2.074</td>
<td>1.0077</td>
<td>231</td>
</tr>
<tr>
<td>79</td>
<td>78</td>
<td>17</td>
<td>317</td>
<td>625</td>
<td>2.046</td>
<td>1.0084</td>
<td>211</td>
</tr>
<tr>
<td>83</td>
<td>82</td>
<td>15</td>
<td>167</td>
<td>575</td>
<td>2.004</td>
<td>1.0075</td>
<td>237</td>
</tr>
<tr>
<td>89</td>
<td>88</td>
<td>15</td>
<td>179</td>
<td>617</td>
<td>2.004</td>
<td>1.0071</td>
<td>255</td>
</tr>
<tr>
<td>97</td>
<td>96</td>
<td>18</td>
<td>389</td>
<td>769</td>
<td>2.092</td>
<td>1.0061</td>
<td>308</td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>19</td>
<td>607</td>
<td>901</td>
<td>2.055</td>
<td>1.0056</td>
<td>340</td>
</tr>
<tr>
<td>103</td>
<td>102</td>
<td>19</td>
<td>619</td>
<td>919</td>
<td>2.049</td>
<td>1.0055</td>
<td>348</td>
</tr>
<tr>
<td>107</td>
<td>106</td>
<td>19</td>
<td>643</td>
<td>955</td>
<td>2.037</td>
<td>1.0053</td>
<td>361</td>
</tr>
<tr>
<td>109</td>
<td>108</td>
<td>21</td>
<td>1091</td>
<td>1081</td>
<td>2.081</td>
<td>1.0049</td>
<td>392</td>
</tr>
<tr>
<td>113</td>
<td>112</td>
<td>16</td>
<td>227</td>
<td>785</td>
<td>2.044</td>
<td>1.0058</td>
<td>325</td>
</tr>
<tr>
<td>127</td>
<td>126</td>
<td>18</td>
<td>509</td>
<td>1009</td>
<td>2.002</td>
<td>1.0051</td>
<td>408</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
<td>16</td>
<td>257</td>
<td>1025</td>
<td>1.999</td>
<td>1.0051</td>
<td>373</td>
</tr>
</tbody>
</table>

Table 1. Parameters for \(64 \leq n \leq 128 \), \(k \) prime or a power of two.

\(^2\) Their experiments were performed on random lattices following a different distribution, but experimentally their results apply here as well.
breaking a 100-bit symmetric cipher. The smallest such parameters in Table 1 are \((n, m, p) = (96, 18, 389)\). Finding pseudo-collisions for these parameters is as hard as breaking a 127-bit symmetric cipher. Concerning all other known attacks, these parameters are more secure than \((64, 16, 257)\).

Note that most of the efficiency improvements we outlined in Section 5 for the original SWIFFT function can be adapted to this setting. Recall Equation 2, since \(k = 97\) is prime we can set \(\omega_j \leftarrow \omega_j + 1\) for any element \(\omega\) of order \(k\) in \(\mathbb{Z}_p\). We recommend to split up the indices \(l = l_0 + 8l_1\), where \(0 \leq l_0 \leq 7, 0 \leq l_1 \leq 11, j\) similar and use \(\omega = 275\), and since multiplying with \(\omega^8 = 16\) can then be realized with bit-shifts. Corresponding to Equation 2 we get

\[
x'_{i,j_0+8j_1} = \sum_{l_0=0}^{7} \omega^{8l_0j_1} \cdot \omega^{l_0(j_0+1)} \cdot \sum_{l_1=0}^{11} \omega^{l_1(8j_0+64j_1+8)} x_{i,l_0+8l_1} \mod p.
\]

Note that the precomputed \(t\) part depends on \(j_1\) now, and needs to be available for \(2^{12}\) possible \(x_i,l\). So this part will need \(12 \cdot 2^4 = 192\) times the space it did before. Doing the same reasoning as before, the number of operations is:

\[
\begin{align*}
\underbrace{18 \cdot 64}_{\text{computing } x'_{i,j}} \quad + \quad \underbrace{18 \cdot 96}_{\text{all } a'_{i,j} \cdot x'_{i,j}} &= 2880 (+40\%) \text{ multiplications} \\
\underbrace{18 \cdot 12 \cdot 24}_{\text{computing } x'_{i,j}} \quad + \quad \underbrace{18 \cdot 96 - 1}_{\text{summing } a'_{i,j} \cdot x'_{i,j}} &= 6911 (+68\%) \text{ additions/subtractions}
\end{align*}
\]

6 Security Analysis

The collision resistance of SWIFFT has the desirable property of being reducible from a worst-case computational problem. In particular, this means an algorithm which breaks random instances of SWIFFT compression functions with main parameter \(n\) can also be used to find short nonzero vectors in all ideals of the ring \(\mathbb{Z}[x]/(x^n + 1)\). Finding such vectors is assumed to be infeasible for large \(n\). However, for the current parameter, \(n = 64\), exhaustive search algorithms find these short vectors in less than one hour. In the lattice challenge [4] open for all enthusiasts similar problems have been solved\(^3\) up to \(n = 108\). Gama and Nguyen even state that finding the shortest vector in \(n\)-dimensional lattices for \(n \leq 70\) should be considered easy [8]. So the resulting lower bound on the attacker’s runtime is insignificant. However, attacking not the underlying worst-case problem, but a concrete SWIFFT instance is much harder.

We will analyze the practical security of SWIFFT. As we have seen in Section 4.2, collisions in the SWIFFT compression functions naturally correspond to vectors with \(\ell_\infty\)-norm bounded by 1 in certain lattices. These may be recovered with lattice basis reduction algorithms. Since these algorithms are highly optimized to find small vectors in the Euclidean norm, it is reasonable to analyze the

\(^3\) See http://www.latticechallenge.org
computational problem of finding pseudo-collisions instead of collisions. These are vectors in the *smallest ball* which contains all vectors corresponding to collisions, so an algorithm which minimizes the Euclidean norm cannot distinguish between the two. In this section, we give experimental evidence that according to a well-known heuristic by Lenstra and Verheul [14], finding pseudo-collisions is comparable to breaking a 68-bit symmetric cipher. In comparison, all other attacks analyzed by the SWIFFT authors take 2^{106} operations and almost as much space.

In their original proposal of SWIFFT, Lyubashevsky *et al.* provide a first analysis of all standard attacks. When it comes to attacks using lattice reduction however they state that the dimension 1024 of SWIFFT lattices is too big for current algorithms. We start by showing that reducing sublattices of dimension 251, which corresponds to $m = 4$, is sufficient to find pseudo-collisions and dimension 325 ($m = 5$) is sufficient for collisions and beyond this point as Micciancio and Regev observe in [18] “the problem [SVP] cannot become harder by increasing m”. This means if we find a pseudo-collision in dimension 251, we can pad it with zeroes to obtain a pseudo-collision for SWIFFT. In practice, even dimension $d = 205$ is sufficient to find pseudo-collisions (cf. Table 1). In particular this means SWIFFTX, where internally SWIFFT is used with $m = 32$ is not more secure.

6.1 Existence of (pseudo-)collisions in d-dimensional sublattices

The method we have given in Section 5 for choosing the dimension of the sublattice we attack with lattice-basis reduction algorithms is a heuristic, because it is based on extensive experiments by Gama and Nguyen. We will now give a related result independent of experiments but dependent on the construction of SWIFFT lattices and other lattices of the form \{$v \in \mathbb{Z}^d : Av \equiv 0$ (mod p)$\}$, where A is some integral matrix. These lattices are widely used in practice for constructing provably secure cryptosystems (see e.g. [9,16,20]) and they originate from Ajtai’s work [1].

Let $h_{\hat{a}}$ be a random SWIFFT compression function with parameters (n, m, p). The range of this function has size $|R| = p^n$. We change the domain of $h_{\hat{a}}$ to all vectors in a d-dimensional subspace of \mathbb{Z}^{nm} that have Euclidean norm less than $r = \sqrt{nm}/2$. The size of this space can be very well approximated by the volume of a d-dimensional ball with radius r, i.e. $|D| \approx r^d \pi^{d/2}/\Gamma(d/2 + 1)$.

Now any collision in the modified $h_{\hat{a}}$ corresponds to a pseudo-collision of the corresponding SWIFFT function by the triangle inequality. These collisions exist for certain by the pigeonhole principle for all $d \geq 251$. So the dimension $d = 205$ suggested by the heuristic looks too optimistic, but remember that this argument only gives an upper bound on the required d and doesn’t take into account the randomness in the choice of \hat{a}.

The situation for proper collisions is similar. Here, we shrink the input to all vectors in a d-dimensional subspace that have coefficients in $\{0, 1\}$. The size of this input space is $|D| = 2^d$. Again, collisions exist by the pigeonhole principle for all $d \geq 513$.
A different analysis is possible here, which takes into account the randomness of \hat{a} and reveals that proper collisions exist for all $d \geq 325$ (see Appendix C).

6.2 Experiments

For our experiments we chose the sublattice dimension where lattice basis reduction algorithms like LLL/BKZ behave optimal in practice (see Section 5). We then proceeded to compare the following lattice basis reduction algorithms to see which performs best in practice on the lattices in our experiment. BKZ as implemented in version 5.5.1 of the “Number Theory Library” (NTL) by Shoup [22], Primal-Dual (PD) as implemented by Filipović and Koy, and finally RSR as implemented by Ludwig. Both latter algorithms are available on request from the authors. It became apparent that Primal-Dual runs much slower than both competitors, so for the main experiment we omitted it.

For our experiments, we fixed $n = 64$, $m = 16$ to their standard values and chose the third parameter p variable. This results in a steady decrease in the Hermite factor and increase in the dimension required to find pseudo-collisions (see Table 2). We found that for smaller values of p, corresponding to smaller values of d, pseudo-collisions were found too fast to make sensible measurements.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>16</td>
<td>29</td>
<td>1.0140</td>
<td>125</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>33</td>
<td>1.0135</td>
<td>130</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>37</td>
<td>1.0131</td>
<td>134</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>41</td>
<td>1.0127</td>
<td>138</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>45</td>
<td>1.0124</td>
<td>141</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>49</td>
<td>1.0121</td>
<td>144</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>53</td>
<td>1.0119</td>
<td>147</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>57</td>
<td>1.0117</td>
<td>150</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>61</td>
<td>1.0115</td>
<td>152</td>
</tr>
</tbody>
</table>

Table 2. Parameters used for our experiments.

For each of these 9 parameter sets, we created 10 random SWIFFT lattices using the PRNG, which is part of NTL. We then proceeded to break all instances with the NTL floating-point variant of BKZ (bkzfp), by increasing the BKZ parameter β until a pseudo-collision was found and recording the total time taken in each case. We also broke all instances with a floating-point variant of Schnorr’s random sampling reduction (RSR) algorithm [21] (rsrfp) implemented by Ludwig [5] using the parameters $\delta = 0.9$, $u = 22$ and again increasing β until a pseudo-collision was found.

4 PD, Bartol Filipović, bartol.filipovic@sit.fraunhofer.de
PSR, Christoph Ludwig, cludwig@cdc.informatik.tu-darmstadt.de
In all cases, we computed the average runtime of both algorithms and plotted the base two log of this value relative to the dimension d. We also plotted a conservative extrapolation (assuming linear growth in logscale) for the average runtime of both algorithms (see Figure 1). The same growth assumption has often been made when analyzing NTRU lattices [11].

All our experiments were run on a single 2.3 GHz AMD Opteron processor. According to the predictions of Lenstra and Verheul [14] the computational hardness of a problem solved after t seconds on such a machine is comparable to breaking a k-bit symmetric cipher, where

$$k = \log_2(t) + \log_2(2300) - \log_2(60 \cdot 60 \cdot 24 \cdot 365.25) - \log_2(5 \cdot 10^5) + 56.$$

Using the data in Figure 1, we can compute the security level k corresponding to the average runtime of each algorithm relative to the dimension d for each parameter set.

The rightmost side of Figure 1 corresponds to $p = 257$, i.e. a real SWIFFT lattice. The extrapolated symmetric bit security for finding pseudo-collisions on these lattices is $k = 68.202$. Any parameter set, where $d \geq 260$ would correspond to a cipher with symmetric bit-security at least 100 according to our extrapolation. Parameters realizing this paradigm are given in Section 5.1.

Some further speculations about the relevance of Hybrid Lattice Reduction as introduced by Howgrave-Graham [12] in 2007 can be found in Appendix D.
6.3 Acknowledgments

We would like to thank Chris Peikert and Alon Rosen for helpful advice and encouragement. We also want to thank Bartol Filipović, Henrik Koy and Christoph Ludwig for letting us use their lattice reduction code. Finally, we thank Markus Rückert and Michael Schneider for their patience and unbounded cooperation.

References

A SIS reduces to SIS’

Theorem 3. Let \(n, q(n) \geq 2, m(n) \geq (1+\epsilon)n \) be positive integers, and \(\beta(n) > 0 \) be a positive real, then \(\text{SIS}_{q(n), m(n), \beta(n)} \) reduces to \(\text{SIS’}_{q(n), m(n), \beta(n)} \). Here, \(\epsilon > 0 \) is some real number independent of \(n \).

Proof. Given an instance of SIS \((q(n), A, \beta(n))\), let \(E \) be the event, that there are \(n \) column vectors in \(A \) which are linearly independent mod \(q(n) \).

Assuming \(E \) holds, there is a permutation matrix \(P \in \{0,1\}^{m(n) \times m(n)} \), such that \(AP = [A']^{m(n)} \) and \(A' \) is invertible mod \(q(n) \). We let the SIS’ oracle solve the instance \((q(n), [I_n, A'^{-1}A''], \beta(n))\). This instance is distributed according to
SIS', when the matrix $A^{-1}A''$ is distributed according to $U(\mathbb{Z}^{n \times (m(n)-n)}_{q(n)})$. This is the case, since A'' was distributed this way and A^{-1} is invertible mod $q(n)$, so it is a permutation on the vectors $\mathbb{Z}^n_{q(n)}$ which does not effect the uniform distribution. From the SIS' oracle, we obtain a solution z. The vector Pz solves our SIS instance because

$$0 = [I_n, A^{-1}A'']z = [A', A'']z = APz \pmod{q}.$$

We will show that the probability of E not occurring is negligible. For brevity, we will write q, m instead of $q(n), m(n)$ for the remaining part. The number of matrices A with n linearly independent columns is equal to the number of matrices with n linearly independent rows. For E to occur, the first row may be anything but the zero-row giving $(q^n - 1)$ possibilities, the second row, can all be but multiples of the first giving $(q^m - q)$ possibilities and so on. The total number of matrices is q^{nm}, so we get

$$\Pr[\text{not } E] = 1 - q^{-nm} \prod_{i=0}^{n-1} (q^m - q^i) = 1 - \prod_{i=0}^{n-1} (1 - q^{i-m}).$$

Let $c = -2\ln(1/2)$, we bound the probability

$$1 - \prod_{i=0}^{n-1} (1 - q^{i-m}) = 1 - \exp((-1)^2 \ln(\prod_{i=0}^{n-1} (1 - q^{i-m})))$$

$$\leq \sum_{i=0}^{n-1} -\ln(1 - q^{i-m}) \overset{(1)}{\leq} c q^{-m} \sum_{i=0}^{n-1} q^i$$

$$= c(q^n - 1)/(q^m(q - 1)) \leq c/q^{m-n} \overset{(3)}{\leq} c/2^n.$$

Inequality (1) holds, because for all real x, $1 - \exp(-x) \leq x$. Similarly, inequality (2) holds because for all $0 \leq x \leq 1/2$ we have $-\ln(1 - x) \leq cx$. Finally, inequality (3) follows from the conditions stated in the theorem. The resulting function is negligible which completes the proof.

\[\square\]

B IdealSIS reduces to IdealSIS’

Theorem 4. Let $n, m(n) \in \Omega(\log(n))$ be positive integers, $q(n) \in \omega(n)$ be prime, and $\beta(n) > 0$ be real, then IdealSIS$_{q,m,\beta}$ reduces to IdealSIS’$_{q,m,\beta}$.

Proof. Given an instance of IdealSIS $(q(n), a, \beta(n))$, let E be the event, that there is an index i, such that $a_i = a_i$ is invertible mod $q(n)$.

Assuming E holds, there is a permutation $P \in \{0, 1\}^{m(n) \times m(n)}$, such that $\hat{a}P = [a', \hat{a}'']$ and a' is invertible mod $q(n)$. We let the IdealSIS’ oracle solve the instance $(q(n), [1, a'^{-1}\hat{a}''], \beta(n))$. This instance is distributed according to IdealSIS’, when the tuple $a'^{-1}\hat{a}''$ is distributed according to $U(R^{m(n)-(n-1)})$. This
is the case, since \tilde{a}'' was distributed this way and a'^{-1} is invertible mod $q(n)$, so it is a permutation on the elements $R_{n,q(n)}$ which does not effect the uniform distribution. From the IdealSIS’ oracle, we obtain a solution \tilde{z}. The vector $P\tilde{z}$ solves our IdealSIS instance.

\[0 = [1, a'^{-1}\tilde{a}''] \tilde{z} = [a', \tilde{a}''] \tilde{z} = \tilde{a}P\tilde{z} \pmod{q}. \]

We will show that the probability of E not occurring is negligible. For brevity, we will write q,m instead of $q(n),m(n)$ for the remaining part. Let f be the minimal polynomial of ζ_n, and f_1, \ldots, f_k be the irreducible factors of f over \mathbb{Z}_q. Since q is prime, for any invertible element in $a \in R_{n,q}$, it is necessary and sufficient that $a \mod f_i \neq 0$. So, the number of invertible elements is $|R_{n,q}^*| = \prod_{i=1}^{k} (q^{\deg(f_i)} - 1)$. The total number of ring elements is $|R_{n,q}| = q^n$. For E to occur, only one of the m ring elements must be invertible, so we get

\[\Pr[\text{not } E] = (1 - q^{-n} \prod_{i=1}^{k} (q^{\deg(f_i)} - 1))^m = (1 - \prod_{i=1}^{k} (1 - q^{-\deg(f_i)}))^m. \]

Let $c = -2\ln(1/2)$, we bound $(\Pr[\text{not } E])^{1/m}$

\[1 - \prod_{i=1}^{k} (1 - q^{-\deg(f_i)}) \overset{(1)}{\leq} \sum_{i=1}^{k} -\ln(1 - q^{-\deg(f_i)}) \overset{(2)}{\leq} c \sum_{i=1}^{k} q^{-\deg(f_i)} \overset{(3)}{=} ck/q \leq cn/q \in 1/\omega(1). \]

Inequality (1) holds, because for all real x, $1 - \exp(-x) \leq x$. Similarly, inequality (2) holds because for all $0 \leq x \leq 1/2$ we have $-\ln(1-x) \leq cx$. Finally, (3) follows from the conditions stated in the theorem. Since $m(n) \in \Omega(\log(n))$, $\Pr[\text{not } E]$ is negligible.

\[\square \]

C Existence of collisions in d-dimensional sublattices

This section represents an analysis of the probability of the existence of collisions in a SWIFFT instance. This is similar the analyses found in Section 6.1. Unlike before however, we now take into account the randomness of the hash-function key \tilde{a}.

For simplicity, we deal with the case, that the key defining the hash-function (written as a matrix) A is unstructured and chosen completely at random. An adaption to the case of skew-circulant keys (used in SWIFFT) yields similar results. The following Lemma gives the probability that a randomly chosen SWIFFT instance has no collisions.

Lemma 1. Let $T = \{0, \pm1\}^d \setminus \{0\}$ and $A \in \mathbb{Z}_q^{n \times d}$ be chosen uniformly at random, then $\Pr[\forall v \in T, A v \mod q \neq 0] = \prod_{i=0}^{d-1} \max\{q^n - 3^i, 0\}$.

\[\]
Proof. Consider the columns of A being drawn consecutively. We count the number of cases where the condition we check for holds. Certainly the condition is true iff the first drawn column is non-zero, giving $(q^n - 1)$ positive cases. Let the first column we drew be a_1. For the condition to remain true, the second column must not be in the set $\{0, \pm 1\}a_1$, giving $(q^n - 3)$ positive cases. Similarly, the third column must not be in $\{0, \pm 1\}a_1 + \{0, \pm 1\}a_2$, which yields $q^n - 3^2$ positive cases. An induction on d validates the given formula. \qed

Some exemplary probabilities for the existence of SWIFFT collisions in a given sublattice dimension d are:

<table>
<thead>
<tr>
<th>d</th>
<th>273</th>
<th>299</th>
<th>325</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr</td>
<td>2^{-80}</td>
<td>2^{-39}</td>
<td>1</td>
</tr>
</tbody>
</table>

D Hybrid lattice reduction

There is a strong similarity between NTRU lattices and SWIFFT lattices which we will make explicit. According to the most recent NTRU flavor [11], an NTRU trapdoor one-way function family is described by the parameters

$$(q^{NTRU}, p^{NTRU}, N^{NTRU}, d_f^{NTRU}, d_g^{NTRU}, d_r^{NTRU}).$$

These relate to SWIFFT families in the following way. Choose $n = N^{NTRU}$, $m = 2$, $p = q^{NTRU}$. Use the polynomial $f(x) = x^n - 1$ for the ring $R_{p,n}$. Let T_d be the set of trinary polynomials of degree $n - 1$ with $d + 1$ entries equal to 1 and d entries equal to -1. In the NTRU setting, we choose our hash-keys (a_1, a_2) not uniformly from $R_{p,n}^2$ but rather from $(1 + p^{NTRU}T_{d_f^{NTRU}}) \times T_{d_g^{NTRU}}$ which are the NTRU secret key spaces.

The strong limitation on the choice of keys allows the trapdoor to work. The use of a reducible polynomial does not guarantee collision resistance anymore [15], but one-wayness is sufficient for NTRUs security. In summation, the step from NTRU to SWIFFT is exchanging a huge $N^{NTRU} = 401, q^{NTRU} = 2048$ with $n = 64, p = 257$ but in turn increase m from 2 to 16. This seems risky because as we mentioned at the beginning of this section, the problem cannot become harder by increasing m beyond some unknown threshold which is at most 8. This upper bound for the threshold given by the dimension d of a sublattice in which short enough lattice vectors must exist (see Section 6.1).

The strongest attack on NTRU lattices is a hybrid method presented at CRYPTO 2007 by Howgrave-Graham [12]. It combines both Meet-in-the-middle (MITM) attacks by Odlyzko [13] and lattice reduction attacks by Coppersmith and Shamir [7]. In our brief summary of the attack we describe three distinct phases.

1. Reduce the public NTRU lattice and save the result in B.
2. Reduce the maximal sublattice of B, which satisfies the geometric series assumption (GSA), i.e. for which the $\|b_i\|$ descend linearly in logscale.
3. Let k be the last index of a length contributing vector in B^*, meaning $\|b_i^*\| \approx 0$ for all $i > k$. Howgrave-Graham introduced a modification of Babai’s Nearest Plane algorithm that allows us to perform a MITM attack on the final $\dim(B) - k$ entries of the secret keys.

Phases 1–2 ensure that $\|b_k^*\|$ is as big as possible. This allows Babai’s original algorithm, and the modification to better approximate CVP in the lattice spanned by the first k basis vectors.

Stated in this form the same algorithm can be used to search for collisions (not pseudo-collisions) in SWIFFT lattices. However, preliminary experiments show that this methodology is not helpful. At the end of phase 2 we find that $k \approx 128$. Obviously, even if the CVP oracle works perfectly we would still have to do a MITM attack on the last $\dim(B) - k \approx 896$ entries. This is too much to be practical.

We are currently working on a generalization of the attack, where step 2 is iterated for $m - 1$ different overlapping parts of the basis, namely

$$[b_1, \ldots, b_{2n}], [b_{n+1}, \ldots, b_{3n}], \ldots, [b_{(m-2)n+1}, \ldots, b_{mn}].$$

This modification is only sensible for SWIFFT and not NTRU. It should bring k closer to $\dim(B)$ possibly at the expense of CVP approximation quality. It remains to be seen if this is a good strategy.