Kosten-Nutzen-Analyse von elektronischen Wahlen an der TU Darmstadt

Diplomarbeit
Darko Popovic
Wirtschaftsinformatik
Darko Popovic
Matrikelnummer: 1193291
Studiengang: Diplom Wirtschaftsinformatik

Diplomarbeit
Thema: Kosten-Nutzen-Analyse von elektronischen Wahlen an der TU Darmstadt

Eingereicht: 8. Februar 2011

Betreuer: Dr. rer. nat. Melanie Volkamer

Prof. Dr. Johannes Buchmann
Fachgebiet Kryptographie und Computeralgebra
Fachbereich Informatik
Technische Universität Darmstadt
Hochschulstraße 10
64289 Darmstadt
Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und noch nicht veröffentlicht.

Darmstadt, den 8. Februar 2011
Inhaltsverzeichnis

Abbildungsverzeichnis ... III
Tabellenverzeichnis .. IV
Abkürzungsverzeichnis .. V
1 Einleitung ... 1
 1.1 Motivation .. 2
 1.2 Ziel ... 2
 1.3 Aufbau ... 3
2 Analyse der Ausgangssituation ... 5
 2.1 Organisation der TU Darmstadt 5
 2.1.1 Mitglieder der TU Darmstadt 5
 2.1.2 Gremien der TU Darmstadt 6
 2.2 Wahlen an der TU Darmstadt 7
 2.2.1 Auswahl der zu betrachtenden Wahlen 8
 2.2.2 Rechtsgrundlagen der Hochschulwahlen 10
 2.2.3 Informationstechnik bei der Durchführung von Hochschulwahlen .. 12
 2.2.4 Ablauf der Hochschulwahlen 12
 2.2.5 Wahlbeteiligung der Hochschulwahlen 17
3 Elektronische Wahlsysteme ... 19
 3.1 Elektronische Wahlgeräte ... 19
 3.2 Papierbasierte Stimmenzählgeräte 20
 3.2.1 Scannerauswertung ... 20
 3.2.2 Digitaler Wahlstift ... 22
 3.3 Internetwahlsysteme ... 23
 3.3.1 Authentifizierung der Wähler 25
 3.3.2 Anonymisierung der Stimme 26
 3.3.3 Wahlsoftware auf dem Client 29
 3.3.4 Bereitstellung der Infrastruktur 30
 3.3.5 Gestaltung des Wahlkanals 31
 3.3.6 Ort der Wahlhandlung ... 32
 3.3.7 Technische und organisatorische Entscheidungsparameter ... 32
4 Elektronische Wahlen an Hochschulen 35
 4.1 Wahl zum Studierendenparlament an der Universität Osnabrück 2000 ... 35
 4.2 Hochschulwahlen an der FH Hannover 2000 36
 4.3 Hochschulwahlen an der FH Hannover seit 2007 38
 4.4 Wahl zum Studierendenparlament an der Universität Karlsruhe 2008 ... 39
 4.5 Hochschülerschaftswahlen in Österreich 2009 40
 4.6 Wahl zum Rat der Graduierten-Akademie in Jena 2010 43
 4.7 Erfahrungen aus den Hochschulwahlen 44
5 Kosten-Nutzen-Analyse für elektronische Wahlen an der TU Darmstadt .. 46
 5.1 Festlegung der Kriterien für die Kosten-Nutzen-Analyse 46
 5.1.1 Investitionskosten .. 46
 5.1.2 Durchführungskosten ... 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3</td>
<td>Organisatorischer Aufwand</td>
<td>47</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Einhaltung der Wahlgrundsätze</td>
<td>47</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Transparenz des Wahlverfahrens</td>
<td>49</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Einfachheit der Wahlhandlung</td>
<td>49</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Rechtliche Rahmenbedingungen</td>
<td>49</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Zusammenfassung der Kriterien</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>Beurteilung der Wahlverfahren für die TU Darmstadt</td>
<td>51</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Urnen- und Briefwahl</td>
<td>51</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Elektronische Wahlgeräte</td>
<td>57</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Papierbasierte Stimmenzählgeräte</td>
<td>66</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Internetwahlverfahren</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Vergleich der Varianten</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>Fazit</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Zusammenfassung</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Ausblick</td>
<td>92</td>
</tr>
<tr>
<td>Anhang</td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td>Internetquellen</td>
<td></td>
<td>XXXIV</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td></td>
<td>XXXVIII</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Aufbau der Arbeit ... 4
Abbildung 2: Mitglieder der TU Darmstadt ... 5
Abbildung 3: Gremien der TU Darmstadt ... 7
Abbildung 4: Ablauf der Hochschulwahlen an der TU Darmstadt 13
Abbildung 5: Wahlgerät vom Typ Nedap ESD1 20
Abbildung 6: Wahlgerät mit Touchscreen und Belegdrucker 20
Abbildung 7: Wahlscanner mit integrierter Urne 21
Abbildung 8: Digitaler Wahlstift .. 22
Abbildung 9: Netwerkarchitektur eines Internetwahlsystems 24
Abbildung 10: Technische Entscheidungsparameter bei Internetwahlen . 33
Abbildung 11: Gestaltung des Internetwahlsystems mit Polyas 76
Abbildung 12: Gestaltung des Internetwahlsystems mit Helios 78
Abbildung 13: Bewertung und Vergleich der Wahlsysteme 91
Tabellenverzeichnis

Tabelle 1: Analyse der Gremienwahlen an der TU Darmstadt ... 9
Tabelle 2: Wahlbeteiligung bei den Wahlen zur Universitätsversammlung 18
Tabelle 3: Anforderungen an ein Wahlprotokoll .. 33
Tabelle 4: Durchführungskosten der Wahl bei der Urnen- und Briefwahl 52
Tabelle 5: Investitionskosten beim Einsatz von Wahlgeräten .. 59
Tabelle 6: Durchführungskosten der Wahl mit Wahlgeräten ... 59
Tabelle 7: Investitionskosten bei der Scanner-Methode ... 69
Tabelle 8: Durchführungskosten der Wahl mit der Scannerauswertung 70
Tabelle 9: Investitionskosten bei Internetwahlen ... 79
Tabelle 10: Durchführungskosten der Wahl bei Internetwahlen .. 79
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs.</td>
<td>Absatz</td>
</tr>
<tr>
<td>Art.</td>
<td>Artikel</td>
</tr>
<tr>
<td>AStA</td>
<td>Allgemeiner Studierendenausschuss</td>
</tr>
<tr>
<td>BMWF</td>
<td>Bundesministerium für Wissenschaft und Forschung, Österreich</td>
</tr>
<tr>
<td>BRZ</td>
<td>Bundesrechenzentrum, Österreich</td>
</tr>
<tr>
<td>BSI</td>
<td>Bundesamt für Sicherheit in der Informationstechnik</td>
</tr>
<tr>
<td>BVerfG</td>
<td>Bundesverfassungsgericht</td>
</tr>
<tr>
<td>BVerfGE</td>
<td>Entscheidungen des Bundesverfassungsgerichts</td>
</tr>
<tr>
<td>CCCB</td>
<td>Chaos Computer Club Berlin</td>
</tr>
<tr>
<td>DoS</td>
<td>Denial of Service</td>
</tr>
<tr>
<td>DDoS</td>
<td>Distributed Denial of Service</td>
</tr>
<tr>
<td>EISS</td>
<td>Europäisches Institut für Systemsicherheit</td>
</tr>
<tr>
<td>FH</td>
<td>Fachhochschule</td>
</tr>
<tr>
<td>GG</td>
<td>Grundgesetz</td>
</tr>
<tr>
<td>HDA</td>
<td>Hochschuldidaktische Arbeitsstelle</td>
</tr>
<tr>
<td>HHG</td>
<td>Hessisches Hochschulgesetz</td>
</tr>
<tr>
<td>HRZ</td>
<td>Hochschulrechenzentrum</td>
</tr>
<tr>
<td>HSM</td>
<td>Hardware Security Module</td>
</tr>
<tr>
<td>i.V.m.</td>
<td>in Verbindung mit</td>
</tr>
<tr>
<td>IT</td>
<td>Informationstechnik</td>
</tr>
<tr>
<td>KIT</td>
<td>Karlsruher Institut für Technologie</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PM</td>
<td>Personenmonat</td>
</tr>
<tr>
<td>PTB</td>
<td>Physikalisch-Technische Bundesanstalt</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>StSTUD</td>
<td>Satzung der Studentenschaft der Technischen Universität Darmstadt</td>
</tr>
<tr>
<td>TAN</td>
<td>Transaktionsnummer</td>
</tr>
<tr>
<td>TU Darmstadt</td>
<td>Technische Universität Darmstadt</td>
</tr>
<tr>
<td>UCL</td>
<td>Université Catholique de Louvain</td>
</tr>
<tr>
<td>ÖH-Wahlen</td>
<td>Wahlen der österreichischen Hochschülerschaft</td>
</tr>
<tr>
<td>WOTUD</td>
<td>Wahlordnung der Technischen Universität Darmstadt</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Motivation

An mehreren Hochschulen im In- und Ausland wurden bzw. werden die Wahlen bereits in elektronischer Form durchgeführt. Dabei kommen unterschiedlichste elektronische Wahlvollsysteme zum Einsatz. Beliebte Varianten sind scannerbasierte Auszählhilfen und Internetwahlen. An der Technischen Universität Darmstadt wird immer noch traditionell per Urnen- und Briefwahl gewählt.

1.2 Ziel

1.3 Aufbau

Das Fazit in Kapitel 6 schließt die Arbeit ab. Es fasst die Ergebnisse der Untersuchung zusammen. Zum Schluss wird ein Ausblick für die Einführung elektronischer Wahlen an der TU Darmstadt gegeben. Der Aufbau der Arbeit ist in Abbildung 1 dargestellt.
1 Einleitung

Motivation zur Einführung von elektronischen Wahlen an der TU Darmstadt
Ziel der Arbeit
Aufbau der Arbeit

2 Analyse der Ausgangssituation

Organisation und Gremien der TU Darmstadt:
- Gremien Universität
- Gremien der Studierendenschaft

Wahlen an der TU Darmstadt:
- Übersicht aller Wahlen und Selektion für weitere Betrachtung
- Rechtsgrundlagen
- Einsatz von IT bei Wahlen
- Ablauf der Wahlen
- Wahlbeteiligung

3 Elektronische Wahlsysteme

Elektronische Wahlgeräte
Stimmenzählgeräte
Internetwahlen

4 Elektronische Wahlen an Hochschulen

Osnabrück 2000
Hannover 2000
Hannover 2007
Karlsruhe 2008
Österreich 2009
Jena 2010
Zusammenfassung

5 Kosten-Nutzen-Analyse zu elektronischen Wahlen an der TU Darmstadt

Festlegung der Kriterien für die Kosten-Nutzen-Analyse
- Investitionskosten
- Wahldurchführungskosten
- Organisatorischer Aufwand
- Geheime Wahl
- Freie Wahl
- Gleiche Wahl
- Transparenz
- Benutzbarkeit
- Rechtlicher Rahmen

Beurteilung der Varianten für elektronische Wahlen an der TU Darmstadt
Vergleich der Varianten

6 Fazit

Zusammenfassung
Ausblick

Abbildung 1: Aufbau der Arbeit
2 Analyse der Ausgangssituation

2.1 Organisation der TU Darmstadt

Nachfolgend wird ein Überblick über die Organisation der TU Darmstadt gegeben. Dazu werden die Mitgliederstruktur und die wichtigsten Gremien beschrieben.

2.1.1 Mitglieder der TU Darmstadt

Die Mitgliedschaft in der TU Darmstadt ist im Hessischen Hochschulgesetz (HHG) geregelt.² Dort werden die Mitglieder in vier Gruppen unterteilt: die Professorengruppe, die Studierenden, die wissenschaftlichen und die administrativ-technischen Mitglieder.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Anzahl Mitglieder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Professorengruppe</td>
<td>272</td>
</tr>
<tr>
<td>2: Studierende</td>
<td>19.017</td>
</tr>
<tr>
<td>3: Wissenschaftliche Mitglieder</td>
<td>1.819</td>
</tr>
<tr>
<td>4: Administrativ-technische Mitglieder</td>
<td>1.544</td>
</tr>
<tr>
<td>Gesamt</td>
<td>22.652</td>
</tr>
</tbody>
</table>

Abbildung 2: Mitglieder der TU Darmstadt³

Der Professorengruppe gehören die Professoren/Professorinnen und die Juniorprofessoren/-professorinnen an. Zu der Gruppe der Studierenden gehören neben diesen auch die immatrikulierten Doktoranden/Doktorandinnen. Die wissenschaftlichen Mitglieder setzen sich

² Vgl. HHG (2009), § 32 Mitglieder und Angehörige.
³ Angaben zu den Mitgliederzahlen entnommen aus den Wahlergebnissen der Wahlen zur Universitätsversammlung aus den Jahren 2010 (Gruppe 2) und 2009 (Gruppen 1, 3, 4), verfügbar auf der Homepage des Wahlamts.
aus den wissenschaftlichen Mitarbeitern/Mitarbeiterinnen, Lehrkräften für besondere Aufgaben und wissenschaftlichen Hilfskräften zusammen. Zu den administrativ-technischen Mitgliedern zählen die Mitarbeiter/Mitarbeiterinnen aus den Bereichen Verwaltung und Technik sowie die Angehörigen des Bibliotheksdienstes und der nichtärztlichen Fachberufe des Gesundheitswesens.

Die Mitglieder der Gruppen 1, 3 und 4 werden fortan gemeinsam als Bedienstete der TU Darmstadt bezeichnet.

2.1.2 Gremien der TU Darmstadt

5 Vgl. StSTUD (2009), § 4 Organe der Studierendenschaft und § 37 Organ der Fachschaft.
2.2 Wahlen an der TU Darmstadt

Im Folgenden werden die Wahlen an der TU Darmstadt betrachtet. Zunächst wird in Kapitel 2.2.1 dargestellt, welche Gremienwahlen es überhaupt gibt und analysiert, welche davon für die Durchführung in elektronischer Form infrage kommen. Anschließend werden in Kapitel 2.2.2 die Rechtsquellen dargelegt, auf deren Grundlage die Wahlen der ausgewählten Gremien durchgeführt werden. Hierbei wird insbesondere untersucht, inwieweit diese bereits Regelungen zur Durchführung von Wahlen in elektronischer Form enthalten. Des Weiteren wird in Kapitel 2.2.3 untersucht, an welchen Stellen die Durchführung von Wahlen an der TU Darmstadt durch Informationstechnik unterstützt wird. Dann wird in Kapitel 2.2.4 der Ablauf der Wahlen beschrieben, wobei insbesondere die organisatorischen Maßnahmen aufgezeigt werden. Schließlich wird in Kapitel 2.2.5 die Wahlbeteiligung in den vergangenen Jahren untersucht.
2.2.1 Auswahl der zu betrachtenden Wahlen

<table>
<thead>
<tr>
<th>Gremium</th>
<th>Wähler</th>
<th># Wahlberechtigte</th>
<th>Wahlbeteiligung</th>
<th>Amtszeit</th>
<th>Zeitpunkt der Wahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universitätsversammlung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Juni</td>
</tr>
<tr>
<td>Gr. 1</td>
<td>Gruppe 1</td>
<td>272</td>
<td>71 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>Gr. 2</td>
<td>Gruppe 2</td>
<td>19.017</td>
<td>23 %</td>
<td>1 Jahr</td>
<td></td>
</tr>
<tr>
<td>Gr. 3</td>
<td>Gruppe 3</td>
<td>1.819</td>
<td>32 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>Gr. 4</td>
<td>Gruppe 4</td>
<td>1.544</td>
<td>23 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>Hochschulversammlungs-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Juni</td>
</tr>
<tr>
<td>vorstand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeweile Gruppen in der</td>
<td>61</td>
<td>1 Jahr</td>
<td>Zu Beginn einer Wahlperiode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universitätsversammlung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universitätspräsident</td>
<td>Universitätsversammlung</td>
<td>61</td>
<td>6 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vizepräsidenten</td>
<td>Universitätsversammlung</td>
<td>61</td>
<td>≤ 3 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanzler</td>
<td>Universitätsversammlung</td>
<td>61</td>
<td>5 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Juni</td>
</tr>
<tr>
<td>Gr. 1</td>
<td>Jeweile Gruppen in der</td>
<td>61</td>
<td>2 Jahre</td>
<td>Zu Beginn einer Wahlperiode</td>
<td></td>
</tr>
<tr>
<td>Universitätsversammlung</td>
<td>Universitätsversammlung</td>
<td></td>
<td>1 Jahr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Gr. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Gr. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Senatsausschüsse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bei Bildung eines Senatsausschusses</td>
</tr>
<tr>
<td>Benennung der Mitglieder durch</td>
<td>20 – 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jeweilige Gruppen im Senat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochschulrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Differiert</td>
</tr>
<tr>
<td>Benennung der Mitglieder durch</td>
<td>4 Jahre</td>
<td></td>
<td></td>
<td></td>
<td>(laufend)</td>
</tr>
<tr>
<td>den Senat auf Vorschlag des</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsidium und durch das</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ministerium für Wissenschaft und</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachbereichsräte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 1</td>
<td>Jeweile Gruppe 1 der</td>
<td>272</td>
<td>70 %</td>
<td>2 Jahre</td>
<td>Gleichzeitig mit den Wahlen zur Universitätsversammlung</td>
</tr>
<tr>
<td>zugehörigen Fachbereiche</td>
<td>zugehörigen Fachbereiche</td>
<td></td>
<td></td>
<td></td>
<td>(Im Wechsel mit den Wahlen der Direktorien der technischen und wissenschaftlichen Institute)</td>
</tr>
<tr>
<td>Gr. 2</td>
<td>Jeweile Gruppe 2 der</td>
<td>19.017</td>
<td>23 %</td>
<td>1 Jahr</td>
<td></td>
</tr>
<tr>
<td>zugehörigen Fachbereiche</td>
<td>zugehörigen Fachbereiche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 3</td>
<td>Jeweile Gruppe 3 der</td>
<td>1.781</td>
<td>32 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>zugehörigen Fachbereiche</td>
<td>zugehörigen Fachbereiche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 4</td>
<td>Jeweile Gruppe 4 der</td>
<td>883</td>
<td>31 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>zugehörigen Fachbereiche</td>
<td>zugehörigen Fachbereiche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gremium</td>
<td>Wähler</td>
<td># Wahlberechtigte</td>
<td>Wahlbeteiligung</td>
<td>Amtszeit</td>
<td>Zeitpunkt der Wahl</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Fachbereichsausschüsse</td>
<td>Jeweilige Gruppen im Fachbereichsrat</td>
<td>13 – 21</td>
<td></td>
<td></td>
<td>Bildung bei Bedarf</td>
</tr>
<tr>
<td>Dekanat</td>
<td>Jeweilige Fachbereichsräte</td>
<td>13 – 21</td>
<td>2 Jahre</td>
<td></td>
<td>Bildung bei Bedarf</td>
</tr>
<tr>
<td>Berufungskommissionen</td>
<td>Jeweilige Gruppen im Fachbereichsrat</td>
<td>13 – 21</td>
<td></td>
<td></td>
<td>Bildung bei Bedarf</td>
</tr>
<tr>
<td>Direktorien der technischen und wissenschaftlichen Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 1</td>
<td>Qua Amt</td>
<td></td>
<td></td>
<td></td>
<td>Gleichzeitig mit den Wahlen zur Universitätsversammlung</td>
</tr>
<tr>
<td>Gr. 2</td>
<td>Gruppe 2 der beteiligten Fachbereichsräte</td>
<td></td>
<td>1 Jahr</td>
<td></td>
<td>(Im Wechsel mit den Wahlen zur Universitätsversammlung und zu den Fachbereichsräten der Gruppen 1, 3 und 4)</td>
</tr>
<tr>
<td>Gr. 3</td>
<td>In der Einrichtung Beschäftigte der Gruppe 3</td>
<td>698</td>
<td>31 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>Gr. 4</td>
<td>In der Einrichtung Beschäftigte der Gruppe 4</td>
<td>277</td>
<td>36 %</td>
<td>2 Jahre</td>
<td></td>
</tr>
<tr>
<td>Forum für Lehrer(innen)-bildung</td>
<td>Gemäß Gruppe im Senat</td>
<td>20 - 22</td>
<td>2 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Jahr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studierendenparlament</td>
<td>Gruppe 2</td>
<td>19.017</td>
<td>23 %</td>
<td>1 Jahr</td>
<td>Gleichzeitig mit den Wahlen zur Universitätsversammlung</td>
</tr>
<tr>
<td>Fachschaftsräte</td>
<td>Jeweils Gruppe 2 der zugehörigen Fachbereiche</td>
<td>18.236</td>
<td>24 %</td>
<td>1 Jahr</td>
<td>Gleichzeitig mit den Wahlen zur Universitätsversammlung</td>
</tr>
<tr>
<td>Allgemeiner Studierendenausschuss (ASTA)</td>
<td>Studierendenparlament</td>
<td>31</td>
<td>1 Jahr</td>
<td></td>
<td>Zu Beginn einer Wahlperiode</td>
</tr>
<tr>
<td>Ältestenrat</td>
<td>Studierendenparlament</td>
<td>31</td>
<td>1 Jahr</td>
<td></td>
<td>Dezember</td>
</tr>
<tr>
<td>Rechnungsprüfungsausschuss</td>
<td>Studierendenparlament</td>
<td>31</td>
<td>1 Jahr</td>
<td></td>
<td>Zu Beginn einer Wahlperiode</td>
</tr>
<tr>
<td>Personalrat</td>
<td>Alle Beschäftigten, die am Wahltag das achtzehnte Lebensjahr vollendet haben</td>
<td>ca. 3.500</td>
<td>4 Jahre</td>
<td></td>
<td>Mai</td>
</tr>
<tr>
<td>Jugend- und Auszubildendenvorstand</td>
<td>Beschäftigte, die das achtzehnte Lebensjahr nicht vollendet haben,</td>
<td>166</td>
<td>34 %</td>
<td>2 Jahre</td>
<td>Mai</td>
</tr>
<tr>
<td></td>
<td>Beamtenanwärter und Auszubildende</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerbehindertenvorstand</td>
<td>Alle schwerbehinderten Beschäftigten</td>
<td>205</td>
<td>50 %</td>
<td>4 Jahre</td>
<td>Oktober-November</td>
</tr>
</tbody>
</table>

Tabelle 1: Analyse der Gremienwahlen an der TU Darmstadt

Der Schwerpunkt dieser Arbeit wird auf die Wahlen zur Universitätsversammlung, den Fachbereichsräten, Direktorien, dem Studierendenparlament und den Fachschaftsräten gelegt. All diese Wahlen, nachfolgend als Hochschulwahlen bezeichnet, sind plebiszitäär und werden gemeinsam durchgeführt. Die Stimmen zu diesen Gremien werden zusammen in ein und derselben Wahlhandlung abgegeben.

Bei den Hochschulwahlen können alle Mitglieder der TU Darmstadt wählen oder sich zur Wahl aufstellen lassen. Insbesondere die große Wählerschaft sowie die kurzen Wahlzyklen von einem Jahr bewirken ein hohes Potenzial zur Kostensenkung und machen die Hochschulwahlen attraktiv für die Durchführung in elektronischer Form. Außerdem können moderne, flexible Wahlkanäle zu einer Erhöhung der Wahlbeteiligung führen, die gerade bei den Studierenden, der mit Abstand größten Wählergruppe, regelmäßig sehr niedrig ist.

2.2.2 Rechtsgrundlagen der Hochschulwahlen

Die Rechtsgrundlage für die Hochschulwahlen an der TU Darmstadt bilden

- die Wahlordnung der Technischen Universität Darmstadt (WOTUD), auf der Grundlage des

Hessischen Hochschulgesetzes (HHG) i.V.m.

- der Grundordnung der Technischen Universität Darmstadt sowie

- die Satzung der Studierendenschaft der TU Darmstadt (StSTUD)
in der jeweils geltenden Fassung.\footnote{Während der Erstellung dieser Arbeit haben die folgenden Fassungen die aktuell geltenden: \begin{itemize}
\item die Wahlordnung der Technischen Universität Darmstadt (WOTUD) vom 19. Mai 2004, zuletzt geändert am 23. Dezember 2004,
\item das Hessische Hochschulgesetz (HHG) vom 14. Dezember 2009 (GVBl. I S. 666),
\item die Satzung der Studierendenschaft der TU Darmstadt (StSTUD) vom 09. Februar 2010, zuletzt geändert am 30. September 2010.
\end{itemize}
Sofern keine anderen Angaben erfolgen, beziehen alle weiteren Ausführungen auf genau diese Fassungen.}
\footnote{Für die Studiengänge Computational Engineering, Mechanik und Informationssystemtechnik, die nicht wie die meisten anderen Studiengänge in Fachbereichen gegliedert, sondern in Studienbereichen organisiert sind gelten daneben noch \begin{itemize}
\item die Ordnung der Gemeinsamen Kommission des Studienbereichs Computational Engineering,
\item die Ordnung des Studienbereichs Mechanik und
\item die Ordnung der Gemeinsamen Kommission des Studienbereichs Informationssystemtechnik.
\end{itemize}
Die Studienbereiche haben statt des Fachbereichsrats eine Gemeinsame Kommission. Zur Vereinfachung werden diese Ausnahmefälle nicht weiter behandelt, gleichwohl lassen sich die gewonnen Erkenntnisse auf die Wahl zur Gemeinsamen Kommission übertragen.}

Zudem erlaubt die Wahlordnung explizit die Verwendung eines elektronischen Wählerverzeichnisses, welches auch tatsächlich an der TU Darmstadt verwendet wird. Auch kann der Hochschulversammlungsvorstand im Einvernehmen mit dem Wahlleiter beschließen, die Briefwahl in elektronischer Form durchzuführen. Voraussetzung hierfür ist jedoch die Einhaltung der Wahlgrundsätze.

2.2.3 Informationstechnik bei der Durchführung von Hochschulwahlen

Weitere wahlbezogene Hard- oder Software werden an der TU Darmstadt nicht eingesetzt. Zum Erstellen der Wahlunterlagen wird MS Office eingesetzt.

2.2.4 Ablauf der Hochschulwahlen

Die Wahlorgane bei den Hochschulwahlen sind der Wahlleiter in Person des Kanzlers der TU Darmstadt und der Wahlvorstand. Der Wahlleiter ist für die technische Vorbereitung der Wahlen verantwortlich. Zu seinen Aufgaben gehört insbesondere die Erstellung des Wählerverzeichnisses, der Druck der Wahlbekanntmachung und der Stimmzettel und die

12 Mit dem elektronischen Wählerverzeichnis werden derzeit nur die Studierenden verwaltet. Es enthält den Namen, die Matrikelnummer und den Fachbereich der Studenten. Eine Ausweitung auf die Bediensteten ist möglich und beabsichtigt. Hierfür ist das Wählerverzeichnis durch die Personalnummern der Bediensteten

Der Wahlablauf kann grob in die Wahlvorbereitung, die Wahldurchführung und die Wahlnachbereitung gegliedert werden. Die nachfolgende Abbildung zeigt den Ablauf der Hochschulwahlen an der TU Darmstadt.

Abbildung 4: Ablauf der Hochschulwahlen an der TU Darmstadt

Mit Durchführung von Wahlen ist im Folgenden der gesamte Wahlablauf gemeint und ist nicht als Synonym zur Phase der Wahldurchführung zu verstehen. Die weiteren Ausführungen zum Wahlablauf beruhen auf der Wahlordnung der TU Darmstadt, der Befragung des Wahlamts13 und auf eigener Beobachtung der Wahldurchführung14.

2.2.4.1 Wahlvorbereitung

Die Studierenden erhalten die Wahlbenachrichtigung vor Beginn des Sommersemesters zusammen mit ihren Unterlagen aus der Einschreibung oder Rückmeldung. Zusätzlich informiert sie der AStA zeitnah vor der Wahl per E-Mail15 über die bevorstehenden Hochschulwahlen. Die Bediensteten erhalten ihre Wahlbenachrichtigung mit der Dienstpost. Darin werden die Wahlberechtigten über ihre Eintragung in das Wählerverzeichnis, die

\begin{itemize}
\item und die Gruppenzugehörigkeit der Wahlberechtigten zu erweitern. Zur Vereinfachung wird ein elektronisches Wählerverzeichnis für alle Mitglieder der TU Darmstadt angenommen.
\item Siehe Anhang A.1 Befragung des Wahlamts.
\item Im Rahmen der Diplomarbeit war ich bei den Hochschulwahlen 2010 selbst als Wahlhelfer an der Wahlurne, bei der Stimmzettelvergabe und bei der Auszählung tätig.
\item Alle Studenten der TU Darmstadt bekommen vom Hochschulrechenzentrum ein E-Mail-Konto gestellt.
\end{itemize}
Fristen zur Einreichung von Wahlvorschlägen und die Termine für die Urnen- und Briefwahl informiert. Etwa vier Monate vor der Wahl erfolgt die öffentliche Wahlbekanntmachung auf Plakaten und auf der Homepage des Wahlamts. Diese beinhaltet, welche Gremien gewählt werden, wer aktiv wahlberechtigt ist, die Zeiten für die Einsicht in das Wählerverzeichnis, die Formen und Fristen zur Einreichung von Wahlvorschlägen und die Einzelheiten zur Brief- und Urnenwahl.

2.2.4.2 Wahldurchführung

16 Anhang A.10 Anleitung zur Briefwahl.
17 Solange die Bediensteten noch nicht im elektronischen Wählerverzeichnis verwaltet werden, sind sie je nach dem Standort des Fachbereiches bzw. der Einrichtung einem der Wahllokalen zugeordnet. Die Fachbereiche bzw. Einrichtungen, die zwischen der Stadtmitte und der Lichtwiese aufgeteilt sind, können an zwei Tagen in der Stadtmitte und an zwei Tagen an der Lichtwiese wählen.
18 Vgl. HHG (2009), § 33 Rechte und Pflichten im Rahmen der Selbstverwaltung.

Zuerst werden die Wahlurnen auf den Zählstischen geleert, die Wahlumschläge, geöffnet und die Stimmzettel je Wahlbereich sortiert und gezählt. Anschließend kann mit der Auszählung der Stimmen begonnen werden. Hierzu werden die Stimmzettel zu jeweils 50 Stück gebündelt und in Zweierpärchen ausgezählt. Das Bündel wird solange ausgezählt, bis es durch eine Gegenprobe bestätigt wird. Die Ergebnisse aus den Strichlisten werden zusammengezählt und

2.2.4.3 Wahlnachbereitung

2.2.5 Wahlbeteiligung der Hochschulwahlen

Die Studierenden bilden den Großteil der Mitglieder an der TU Darmstadt und bestimmen somit maßgeblich die Wahlbeteiligung. Vor 2005 lag die Wahlbeteiligung bei den Hochschulwahlen bei etwa 10 %. Im Dezember 2004 wurde mit der Änderung des *Hessischen*

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gruppe</th>
<th># Wahlberechtigte</th>
<th># Wähler laut Wählerverzeichnis</th>
<th>Wahlbeteiligung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Gruppe 1</td>
<td>272</td>
<td>189</td>
<td>70,6 %</td>
</tr>
<tr>
<td></td>
<td>Gruppe 2</td>
<td>17.569</td>
<td>5.204</td>
<td>29,1 %</td>
</tr>
<tr>
<td></td>
<td>Gruppe 3</td>
<td>1.819</td>
<td>570</td>
<td>32,0 %</td>
</tr>
<tr>
<td></td>
<td>Gruppe 4</td>
<td>1.544</td>
<td>354</td>
<td>22,9 %</td>
</tr>
<tr>
<td>2010</td>
<td>Gruppe 2</td>
<td>19.017</td>
<td>4.579</td>
<td>22,7 %</td>
</tr>
</tbody>
</table>

Tabelle 2: Wahlbeteiligung bei den Wahlen zur Universitätsversammlung

Dennoch ist die Wahlbeteiligung verglichen mit den Wahlen vor 2005 relativ hoch und vermutlich darauf zurückzuführen, dass viele Studierende nicht über die Abschaffung der Klausel informiert sind. Deren Zahl wird sich jedoch mit der Zeit kontinuierlich verringern, so dass in Zukunft ein weiteres Absinken der Wahlbeteiligung möglich ist.

24 Vgl. Anhang A.1 Befragung des Wahlamts, Frage 15.
25 Vgl. HHG (2009), § 76 Studierendenschaft, Abs. 4, Satz 5.
3 Elektronische Wahlsysteme

Elektronische Wahlen bezeichnen alle Formen der Wahldurchführung, die irgendwo zwischen Stimmabgabe und Stimmenauszählung durch Informationstechnik unterstützt werden.²⁷ Die Gesamtheit der dabei eingesetzten IT stellt das elektronische Wahlsystem dar. Diese lassen sich in drei Gruppen unterteilen: elektronische Wahlgeräte, papierbasierte Stimmenzählgeräte und Internetwahlsysteme. In diesem Kapitel wird ein Überblick über die bestehenden elektronischen Wahlsysteme gegeben.²⁸

3.1 Elektronische Wahlgeräte

Typischerweise werden die Stimmen gleich nach der Stimmabgabe auf dem Wahlgerät gespeichert und existieren dann nur noch in elektronischer Form. Physische Nachweise über die abgegebenen Stimmen liegen nicht vor, so dass eine Nachzählung ebenso wie eine Reproduzierbarkeit des Wahlergebnisses nicht möglich ist.³⁰ Um dem entgegenzuwirken gibt es mittlerweile erste Wahlgeräte mit integriertem Belegdrucker. Dieser ist fest am Gehäuse des Wahlgeräts angebracht und druckt die Stimme des Wählers aus.³¹ Ein solches Wahlgerät

²⁸ Mechanische Wahlsysteme wie Lochkartengeräte oder Hebelmaschinen werden in dieser Arbeit nicht betrachtet.
³¹ Ein entsprechendes Wahlgerät bietet der amerikanische Hersteller ES&S mit dem iVotronic Real Time Audit Log an.
ist in Abbildung 6 dargestellt.

Abbildung 5 zeigt ein elektronisches Wahlgerät des bekanntesten Herstellers in Europa Nedap.\(^{32}\) Weitere Hersteller von Wahlgeräten sind Scytl, ES&S, Hart InterCivic und Smartmatic in Nordamerika.

3.2 Papierbasierte Stimmenzählgeräte

3.2.1 Scannerauswertung

Für die Auswertung mit dem Scanner sind die Stimmzettel mit Markierungen an den Ecken versehen. Damit wird die Position der handschriftlich auszufüllenden Felder ermittelt. Zudem befindet sich auf dem Stimmzettel ein Hinweis zum korrekten Ausfüllen der Felder, damit die

\(^{32}\) Siehe Webseite von [Nedap Election Systems](http://www.nedap-elections.com).

\(^{33}\) Siehe Webseite von [Scytl](http://www.scytl.com).

\(^{34}\) Siehe Webseite von [ES&S](http://www.ess-us.com).

\(^{35}\) Siehe Webseite von [Hart InterCivic](http://www.hartintercivic.com).

\(^{36}\) Siehe Webseite von [Smartmatic](http://www.smartmatic.com).

Die Stimmzettel können einzeln vor dem Einwurf in die Wahlurne, währenddessen oder gemeinsam nach Wahlschluss ausgewertet werden. Im ersten Fall befindet sich der Scanner in der Wahlkabine. Der Wähler scannt den ausgefüllten Stimmzettel und die Auswahl wird zur Kontrolle auf einem Bildschirm angezeigt. Er kann dann die Stimme bestätigen und in die Wahlurne einwerfen oder einen neuen Stimmzettel anfordern, falls die Auswertung fehlerhaft war. Erfolgt die Auswertung während der Stimmzettel eingeworfen wird, bilden Scanner und Wahlurne eine Einheit. Ein entsprechendes Gerät ist in \textit{Abbildung 7} dargestellt. Der Scanner zieht gültige Stimmzettel ein und befördert sie in die Wahlurne. Versehentlich ungültig ausgefüllte Stimmzettel, etwa solche mit zu vielen Kreuzen, kann der Scanner erkennen und zurückweisen. Bei der Auswertung nach Wahlschluss werden die Wahlurnen geleert, die Stimmzettel zusammengetragen und mit einem Einzugscanner ausgewertet. Ungültige Stimmen fallen erst bei der Auszählung auf und können nicht mehr korrigiert werden.39

Abbildung 7: Wahlscanner mit integrierter Urne (Quelle: Hart InterCivic)

38 So z.B. der Wahls scanner \textit{DS850 von ES&S}.

39 Vgl. De Cock/Preneel (2007), S. 83 zum Wahlablauf mit dem Scanner.
Scanner zur Durchführung von Wahlen werden unter anderem von ES&S, Hart InterCivic und Smartmatic angeboten.

3.2.2 Digitaler Wahlstift

\begin{center}
\includegraphics[width=0.5\textwidth]{digitaler_wahlstift.png}
\end{center}

\textit{Abbildung 8: Digitaler Wahlstift (Quelle: Golem)}
Die Stimmzettel sind mit einem feinen, kaum sichtbaren Raster (Anoto Pinzip41) bedruckt, durch das die integrierte Kamera die Schriftzüge und deren Position ermittelt. Die abgegebene Stimme wird zunächst im Speicher des digitalen Wahlstifts zwischengespeichert und anschließend mittels der Dockingstation an einen angeschlossenen PC übertragen. Auf diesem ist eine Wahlsoftware installiert, die alle abgegebenen Stimmen auswertet und das Gesamtergebnis berechnet.42

3.3 Internetwahlsysteme

41 Siehe Beschreibung des Anoto Principles.
45 Siehe Webseite von dotvote.

Abbildung 9: Netwerkarchitektur eines Internetwahlsystems

Mit dem Polyas-Internetwahlsystem bietet Micromata46 eine Komplettlösung an, die schon vielfach bei Gremienwahlen in privaten Vereinen eingesetzt wurde.47 Weitere Anbieter von Internetwahlen sind z.B. Scytl48 und Safevote49.

Neben der einzusetzenden Technik gibt es bei der Durchführung von Internetwahlen auch organisatorische Gestaltungsmöglichkeiten. So kann die benötigte Hard- und Software selbst

46 Siehe Webseite von Micromata.
47 Siehe Webseite von Polyas und die dort angegebenen Referenzen.
48 Siehe Webseite von Scytl.
49 Siehe Webseite von Safevote.

Im Folgenden werden die technischen und organisatorischen Möglichkeiten zur Lösung der beschriebenen Fragestellungen erläutert.

3.3.1 Authentifizierung der Wähler

Der wahlberechtigte Wähler kann sich gegenüber dem Wahlberechtigungsserver durch einen Code, den nur er kennt, einen Gegenstand, den nur er besitzt, oder eine biometrische Eigenschaft, die nur er aufweist, authentifizieren. Die verschiedenen Verfahren werden nachfolgend erläutert.

- **Geheimer Authentifizierungscode / TAN**

 Die Wahlberechtigten erhalten eine eindeutige, geheime Zeichenkette, die TAN. Die TAN ist eine zufällig generierte Zeichenkette aus Ziffern und Buchstaben und wird den Wählern per Post oder E-Mail zugesandt. Diese Art der Authentifizierung ist für den Wähler sehr einfach, hat aber den Nachteil, dass allein der Besitz der TAN zur Stimmabgabe ausreicht. So können durch die Weitergabe der TAN Stimmen einfach gekauft bzw. verkauft werden.

- **Besitz eines Authentifizierungsgegenstands / Elektronischer Ausweis**

Elektronische Wahlsysteme

- Biometrische Authentifizierungseigenschaft

Bei der Auswahl des Authentifizierungsverfahrens sind Sicherheit, Kosten und Benutbarkeit gegeneinander abzuwägen, da diese Ziele in der Regel konkurrieren. Die Authentifizierung kann auch durch Kombination verschiedener Verfahren vorgenommen werden, z.B. durch Chipkarte und TAN.

3.3.2 Anonymisierung der Stimme

- Anonymisierung in der Wahlvorbereitung

 Authentifizierungs-TAN. Die Wahlberechtigten erhalten eine Authentifizierungs-TAN. Sie allein dient zur Überprüfung der Wahlberechtigung und ermöglicht die einmalige

53 Die Klassifizierung und die nachfolgenden Beschreibungen der Anonymisierungsverfahren beruhen im Wesentlichen auf Volkamer (2009), S. 27 f.
Stimmabgabe. Auf diese Weise bleibt die Identität des Wählers während der Wahlhandlung stets anonym. Bei diesem Verfahren ist sicherzustellen, dass bei der Erstellung und Versendung der Authentifizierungs-TANs diese den Wählern nicht zugeordnet werden können.54

- Anonymisierung bei der Stimmabgabe

Benaloh Modell. Das Modell von Benaloh beruht auf einem Verfahren des *secret sharing*\(^{56}\). Die Stimme des Wählers wird in \(n\) Teile zerlegt und auf \(n\) Wahlserver verteilt. Nach Wahlschluss bildet jeder Wahlserver sein Teilergebnis. Die Teilergebnisse aller Wahlserver werden zum Wahlergebnis zusammengefügt.

- **Anonymisierung bei der Auszählung**

\(^{56}\) Beim *secret sharing* wird ein Geheimnis unter mehreren Teilnehmern aufgeteilt und kann nur von allen gemeinsam wieder hergestellt werden.

\(^{57}\) Vgl. zur nachfolgenden Beschreibung der homomorphen Verschlüsselung auch Meißner/Hartmann/Richter (2004), S. 107 f.

3.3.3 Wahlsoftware auf dem Client

Die Wahlsoftware begleitet den Wähler durch die Wahlhandlung und führt das implementierte Wahlprotokoll aus. Die möglichen Alternativen sind das Benutzen des vorhandenen Webbrowser, ein spezielles Client-Wahlprogramm, ein Java-Applet, das vom Browser ausgeführt wird, oder ein Wahlbetriebssystem in Form einer bootfähigen CD.\(^{59}\) Diese werden im Folgenden diskutiert:

- **Webbrowser**

- **Spezielles Client-Wahlprogramm**

- **Java-Applet**

• **Boot CD**

Beim Starten des PCs wird direkt ein spezielles Wahlbetriebssystem auf der Boot CD ausgeführt. Da nicht der gewöhnliche Betriebsmodus des PCs geladen und ausgeführt wird, hat die auf dem PC befindliche Software keinen Einfluss auf den weiteren Wahlvorgang. Somit bleibt auch eventuell vorhandene Schadsoftware wirkungslos. Das Wahlbetriebssystem baut dann eine Verbindung zum Internet auf und initiiert die Wahlhandlung. Allerdings wird aus Benutzbarkeitsgründen für den Bootvorgang eine automatische Hardware- und Netzwerkerkennung benötigt. Diese ist nicht auf allen üblichen PCs möglich und der automatische Aufbau der Internetverbindung ist sehr komplex, so dass diese Methode noch nicht ausgereift ist.

Die vorgestellten Lösungsmöglichkeiten unterscheiden sich in der Sicherheit, den Kosten und der Benutzbarkeit. Neben diesen softwarebasierten Lösungen kann auch ein spezielles Wahlendgerät verwendet werden. Dieses ist aber aufgrund der hohen Kosten nur bei sehr kleinen Wählerzahlen machbar und wird daher nicht weiter betrachtet. ⁶⁰

3.3.4 Bereitstellung der Infrastruktur

Die verschiedenen Wahlserver und die darauf installierte Wahlsoftware bilden zusammen mit verschiedenen Sicherheitskomponenten, wie Backup-Server und Firewall, die Infrastruktur von Internetwahlsystemen. Zur Bereitstellung der Infrastruktur bestehen folgende Möglichkeiten:

• **Eigene Bereitstellung der Infrastruktur durch den Wahlveranstalter**

• **Auszug der gesamten Infrastruktur an einen Wahldienstleister**

 Ein Wahldienstleister stellt seine Wahlsoftware zur Verfügung und übernimmt den Betrieb, die Wartung und den Schutz der Wahlserver.

• **Einkauf der Software und Betrieb auf den eigenen Servern des Wahlveranstalters**

3.3.5 Gestaltung des Wahlkanals

- Reine Internetwahl

Eine reine Internetwahl ist nur möglich, wenn alle Wahlberechtigten über einen Internetzugang verfügen oder der Wahlveranstalter entsprechende Möglichkeiten zur Stimmabgabe bereitstellt. Andernfalls werden Wähler ohne Internet von der Wahl ausgeschlossen.

- Internetwahl als zusätzlicher Wahlkanal

- Internetwahl anstelle der Briefwahl

Die Briefwahl soll den Wählern, die am Wahltag verhindert sind, trotzdem die Möglichkeit zum Wählen geben. Denselben Zweck kann auch die Internetwahl erfüllen, sofern die Wähler während des Wahlzeitraums Zugang zum Internet haben. Auch hier muss eine Mehrfachwahl ausgeschlossen und der Wahlzeitraum und die Zulassungsmodalitäten zur Internetwahl festgelegt werden.
3.3.6 Ort der Wahlhandlung

Bei der Internetwahl kann die Wahlhandlung im privaten Bereich des Wählers vorgenommen werden. Alternativ oder zusätzlich können auch Wahlkioske oder Wahllokale eingerichtet werden.\(^{61}\)

- Privates Umfeld

 Die Stimmabgabe ist von jedem beliebigen PC mit Internet möglich. Sie kann beispielsweise von zu Hause aus, am Arbeitsplatz oder im Internetcafé erfolgen. Da die Stimmabgabe im privaten Umfeld des Wählers nicht vom Wahlveranstalter kontrolliert werden kann, ist der Wähler, wie bei der Briefwahl, selbst für die geheime und freie Wahl verantwortlich.

- Wahlkiosk

- Wahllokal

Im Vergleich zu den anderen Alternativen unterliegt die private Internetwahl zwar nicht der Kontrolle des Wahlvorstands, bietet dem Wähler aber ein hohes Maß an Flexibilität.

3.3.7 Technische und organisatorische Entscheidungsparameter

Anonymität	Rückschlüsse vom Wähler auf seine Stimme und umgekehrt sind nicht möglich.
Quittungsfreiheit	Der Wähler kann seine Wahlentscheidung nicht gegenüber Dritten beweisen.
Authentifizierung	Alle Wahlberechtigten, und nur diese, können genau eine Stimme abgeben.
Integrität	Stimmen können nicht unbemerkt geändert, gelöscht oder hinzugefügt werden.
Fairness	Es können keine Zwischenergebnisse vor Wahlschluss berechnet werden.
Korrektheit	Alle Stimmen werden gewertet und das Wahlergebnis wird korrekt berechnet.
Robustheit	Das Wahlprotokoll ist stabil bei Angriffen und Systemausfällen.

Tabelle 3: Anforderungen an ein Wahlprotokoll

Die Anforderungen sind im Wesentlichen aus den Wahlgrundsätzen abgeleitet. So folgen Anonymität und Quittungsfreiheit aus den Grundsätzen der geheimen und freien Wahl. Aus der allgemeinen und gleichen Wahl leiten sich Authentifizierung, Integrität, Fairness,
Korrektheit und Robustheit ab. Die Verifizierbarkeit dient der Transparenz des Internetwahlsystems und der Nachvollziehbarkeit durch die Wähler.

Keines der existierenden Wahlprotokolle erfüllt alle Anforderungen ohne bestimmten Annahmen. Insbesondere gelingt es nicht, ein praktikables, individuell verifizierbares Wahlprotokoll zu entwickeln, das gleichzeitig auch quittungsfrei ist.63 Daher sind bei der Auswahl eines Wahlprotokolls Sicherheit, Transparenz, Benutzerfreundlichkeit und Kosten gegeneinander abzuwägen.64

\begin{footnotesize}
\footnotesize
\begin{enumerate}
\item Vgl. Philippsen (2002), S. 146.
\end{enumerate}
\end{footnotesize}
4 Elektronische Wahlen an Hochschulen

4.1 Wahl zum Studierendenparlament an der Universität Osnabrück 2000

Im Februar 2000 konnten die Studenten der Universität Osnabrück das Studierendenparlament und die Fachschaftsräte über das Internet wählen. Die Wahl gilt als die weltweit erste rechtsgültige Internetwahl.

Elektronisches Wahlverfahren. Das eingesetzte Internetwahlverfahren i-Vote wurde an der Universität Osnabrück von der Forschungsgruppe Internetwahlen unter der Führung Prof. Otten entwickelt. Die Authentifizierung erfolgte mit einer digitalen Chipkarte und einer TAN. Das implementierte Wahlprotokoll entsprach einem frühen Verfahren mit blinden Signaturen, dass auf einem vertrauenswürdigen Wahlurnenserver basierte. Die Wahlinfrastruktur wurde eigens von Universität bereitgestellt und als Client-Wahlsoftware ein Java-Applet verwendet. Die Internetwahl wurde als zusätzlicher Wahlkanal angeboten und die Stimmabgabe war im privaten Umfeld oder in den an der Universität eingerichteten Wahlterminske

Wahlablauf. Wer über das Internet wählen wollte, musste sich vorher anmelden und bekam dann eine digitale Chipkarte mit persönlicher Signatur, ein Kartenlesegerät und die Wahlsoftware zugesandt. Von den etwa 10.000 wahlberechtigten Studenten haben 409 die

65 Für Hochschulwahlen im Ausland vgl. z.B. die Wahlen an der Université Catholique de Louvain (UCL), Belgien 2009 in Adida et al. (2009) und die Wahlen an der Princeton University, USA 2010.
Internetwahl beantragt. Insgesamt haben ungefähr 1.600 Studenten gewählt und etwa 160 Wähler haben schließlich ihre Stimme über das Internet abgegeben.68

\textbf{4.2 Hochschulwahlen an der FH Hannover 2000}

Wenige Monate nach den Internetwahlen in Osnabrück konnten auch die Studenten an der FH Hannover über das Internet wählen. Dadurch sollte die Wahlbeteiligung erhöht werden.71

\textbf{Elektronisches Wahlsystem.} Bei dem selbst entwickelten Internetwahlsystem wurde großer Wert auf eine einfache Wahlhandlung gelegt. Daher wurde auf zusätzliche Hard- und Software für die Wähler verzichtet. Zur Stimmabgabe wurde lediglich ein Webbrowser

70 Philippsen (2002), S. 147.
71 Vgl. den Bericht zur Internetwahl an der FH Hannover für die nachfolgende Beschreibung der Internetwahl in Hannover 2000.

5.626 Studenten waren wahlberechtigt, 323 haben die Internetwahl beantragt und davon haben 220 tatsächlich über das Internet gewählt. Vor der eigentlichen Wahl wurde eine Testwahl zum besten Mensa essen durchgeführt.

Erkenntnisse. Probleme wie bei der Wahl in Osnabrück konnten verhindert werden. Die einfache Stimmabgabe wurde von den Studenten gut angenommen. Hacker-Angriffe waren nicht erfolgreich. Lediglich war aufgrund von technischen Problemen mit dem hochschulinternen Netz zeitweise der Zugriff auf das Wahlsystem aus einigen Bereichen nicht möglich. Aus dem Internet dagegen war das Wahlsystem jederzeit erreichbar. Die erhoffte Erhöhung der Wahlbeteiligung blieb aus, was auf mangelndes hochschulpolitisches Interesse zurückgeführt wird. Da außerdem auch der organisatorische Aufwand hoch war, wurde die

72 Ob dabei die erforderliche Schriftform bzw. elektronische Form eingehalten und eine rechtswirksame eidesstattliche Erklärung abgegeben wurde, soll an dieser Stelle nicht diskutiert werden.
Internetwahl eingestellt. Aus technischer und juristischer Sicht wurde die Wahl aber als Erfolg bezeichnet.

4.3 Hochschulwahlen an der FH Hannover seit 2007

Seit etwa 2007 werden an der FH Hannover die Stimmzettel automatisch von einem Scanner ausgewertet.\(^{73}\)

Elektronisches Wahlsystem. Das elektronische Wahlsystem besteht aus *UniWahl4*\(^{74}\), dem Datenerfassungs- und Datenauswertungssystem *EvaSys*\(^{75}\) von *Electric Paper*\(^{76}\) und einem Dokumentenscanner. *UniWahl4* ist eine Wahlunterstützungsssoftware, die den gesamten Ablauf bei der Durchführung von Hochschulwahlen unterstützt. Sie wurde an der FH Hannover von Prof. Frens Peters entwickelt und wird kommerziell vertrieben. Auch andere Hochschulen setzen *UniWahl4* zur Durchführung der Hochschulwahlen ein.\(^{77}\)

\(^{73}\) Vgl. Anhang A.5 Befragung von Prof. Frens Peters, FH Hannover, Teil II zur Beschreibung der Stimmenauszählung mit Scanner an der FH Hannover.

\(^{74}\) Siehe Webseite von *UniWahl4* und die Gremienwahl mit *UniWahl4*.

\(^{75}\) Siehe Webseite von *EvaSys*.

\(^{76}\) Siehe Webseite von *Electric Paper*.

\(^{77}\) Eine Übersicht der Hochschulen, die *UniWahl4* nutzen gibt die Liste der *UniWahl4*-Installationen.
Bei den letzten kleinen Hochschulwahlen an der FH Hannover wurden rund 1.500 Stimmzettel mit einem Scanner ausgewertet. Die Auszählung dauerte etwa drei Stunden.

4.4 Wahl zum Studierendenparlament an der Universität Karlsruhe 2008

Am *Europäischen Institut für Systemsicherheit* (EISS) der Universität Karlsruhe\(^\text{79}\) wurde ein Wahlgeräts entwickelt. Das Ziel war die Umsetzung eines elektronischen Wahlsystems mit individueller und universeller Verifizierbarkeit und gleichzeitiger Quittungsfreiheit. Das als *Bingo Voting*\(^\text{80}\) bezeichnete Verfahren kam bei der Wahl zum Studierendenparlament an der Universität Karlsruhe 2008 zum Einsatz.

\(^{79}\) Am 01.10.2009 haben sich die Universität Karlsruhe und das Forschungszentrum Karlsruhe zum *Karlsruher Institut für Technologie (KIT)* zusammengeschlossen.

\(^{80}\) Siehe Webseite von *Bingo Voting*.

Wahlablauf. Die elektronische Wahl wurde alternativ zur Urnenwahl angeboten. Hierzu wurden zwei Wahlgeräte zur Verfügung gestellt. Die Authentifizierung erfolgte mit einer Chipkarte, der sogenannten *FriCard*\(^{83}\). Diese wurde bereits 2004 an der Universität eingeführt und dient unter anderem als Bezahlkarte und Semesterticket.\(^{84}\)

Augrund der negativen Erfahrungen wurde *Bingo Voting* in den nachfolgenden Wahlen nicht mehr angeboten.\(^{86}\)

4.5 Hochschülerschaftswahlen in Österreich 2009

Elektronisches Wahlsystem. Es wurde ein Internetwahlsystem entwickelt, bei dem ein Mixing-Notebook alle wichtigen Aufgaben, insbesondere die Sicherung des Wahlgeheimnisses, übernimmt. Die Authentifizierung der Wähler erfolgt mit einer TAN und einer Chipkarte, der sogenannten Bürgerkarte. Die verschlüsselten Stimmen werden zusammen mit den

83 Siehe Webseite von *FriCard*.

84 Vgl. die [Vorstellung der FriCard am KIT](#).

persönlichen Daten der Wähler auf dem Urnenserver gespeichert. Nach Wahlschluss werden diese auf ein Mixing-Notebook übertragen. Dieses überprüft die Daten auf Integrität, trennt die Stimmen von den persönlichen Daten und mischt diese durch. Für die Entschlüsselung der Stimmen wurde vor der Wahl ein Schlüssel erzeugt, der in vier Teile zerlegt und verschiedenen Mitgliedern des Wahlvorstands in Form einer Chipkarte übergeben wurde. Drei der vier Chipkarten werden benötigt, um die Stimmen zu entschlüsseln und die Auszählung anzustoßen. Anhand der persönlichen Daten werden die Internetwähler im Wählerverzeichnis abgehakt und können nicht an der Urnenwahl teilnehmen.\(^{88}\)

Wahlablauf. Die Internetwahl wurde als zusätzlicher Wahlkanal eingeführt und konnte in der Woche vor der Urnenwahl genutzt werden. Hierfür wurde ein Internetportal\(^{91}\) eingerichtet, das sämtliche Informationen zur ÖH-Wahl und den Link zur Wahlseite enthielt. Die Internetwahl war vom privaten PC oder von Wahl-PC's an den Universitäten möglich. Im Vorfeld der Wahl wurden die Internetwahl beworben, die technischen Komponenten zur Stimmabgabe und Wählerauthentifizierung zertifiziert, Bedienbarkeitsstudien der Wahlsoftware durchgeführt und der Wahlvorstand für die Benutzung des Wahladministrationssystems geschult. Die Bürgerkarte war aufgrund von mangelnden Nutzungsmöglichkeiten kaum verbreitet. Zu ihrer besseren Durchdringung wurden entsprechende Aktionen durchgeführt. So wurden kostenlose Kartenlesegeräte an Studenten verteilt, die ihre Bürgerkarte aktivieren ließen.\(^{92}\) Nach der Wahl wurden alle Daten, die nicht der Aufbewahrungspflicht unterlagen, vernichtet. Obwohl eine Lösung der Daten

\(^{88}\) Vgl. BMWF (2010), S. 54 ff. sowie Sokolov (2009c).
\(^{89}\) Vgl. BMWF (2010), S. 62 ff.
\(^{90}\) Siehe Webseite von Scytl.
\(^{91}\) Siehe Webseite zur ÖH-Wahl 2009.
\(^{92}\) Vgl. BMWF (2010), S. 69 ff. zum Wahlablauf.
ausgereicht hätte, wurden die entsprechenden Datenträger und Wahlserver physisch verschrot tet. Dies sollte der Sicherheit und Transparenz des Wahlgeheimnisses dienen.93

\textbf{Erkenntnisse}. Der Beschluss durch das BMWF einen Internetwahlkanal bei den ÖH-Wahlen gegen den Willen der Studenten einzuführen hat zu kontroversen Diskussionen und heftigen Reaktionen seitens der Gegner von elektronischen Wahlen geführt. Dies ging so weit, dass ein organisierter Überlastungsangriff auf das Wahl system versucht wurde. Die \textit{ARGE DATEN}94 hat ein entsprechendes Computerprogramm veröffentlicht und zu „Verfügbarkeits tests“ während des gesamten Wahlzeitraums aufgerufen. Eine Analyse des Programms ergab, dass keine speziellen Hacker-Techniken implementiert wurden und so der Angriff leicht abgewehrt werden konnte. Das Wahlsystem war während der gesamten Wahlzeit erreichbar.95

Dennoch wurden bei der Wahl grobe Mängel festgestellt. Durch die Umstellung auf elektronische Wählerverzeichnisse und Wahladministrationsoftware wurden in den Wahllokalen unvollständige Wählerverzeichnisse zur Verfügung gestellt, so dass zunächst nicht alle Studierenden wählen konnten.96 In Salzburg führten Fehler im Wählerverzeichnis dazu, dass manche Studierende nicht und andere mehrmals wählen konnten.97 Außerdem blieben Fehler auf den elektronischen Stimmzetteln unbemerkt, da diese bis zum Beginn der Wahl geheim gehalten wurden. So fehlten auf den elektronischen Stimmzetteln die Kurzbezeichnungen der Parteien und bei einer Partei fehlte ein ganzes Wort im Vollnamen.98 Die aufgezeigten Mängel sind zwar nicht spezifisch für elektronische Wahlen und können auch bei einer Papierwahl entstehen. Dennoch nutzten die Studenten diese Pannen, um ihren Unmut gegenüber den Internetwahlen auszudrücken. Sie fochten die Wahlen an, woraufhin diese tatsächlich an einigen Universitäten aufgehoben wurden. Darüber hinaus reichten die Studenten vor dem österreichischen Verfassungsgerichtshof eine Klage ein, mit der die grundsätzliche Zulässigkeit von elektronischen Wahlen infrage gestellt wird.99

Die Wahlbeteiligung war so niedrig wie nie zuvor bei ÖH-Wahlen. Mit 2.161 Internetwählern lag deren Anteil nur bei unter 1 % der Wahlberechtigten bzw. 4 % der Wähler. An mehreren

\begin{itemize}
 \item Vgl. BMWF (2010), S. 100 f.
 \item Siehe Webseite der \textit{ARGE DATEN}.
 \item Vgl. BMWF (2010), S. 87 ff.
 \item Vgl. Sokolov (2009a).
 \item Vgl. Sokolov (2009b).
 \item Vgl. Sokolov (2009a) und Sokolov (2009b).
 \item Vgl. Sokolov (2010a) und Sokolov (2010b).
\end{itemize}
Universitäten wurde die Möglichkeit über das Internet zu wählen überhaupt nicht genutzt. Kritiker deuten dies als Ausdruck von Protest.\footnote{Vgl. BMWF (2010), S. 99 und Sokolov (2009a).}

4.6 Wahl zum Rat der Graduierten-Akademie in Jena 2010

An der Friedrich-Schiller-Universität wurde 2010 der Rat der Graduierten-Akademie über das Internet gewählt.\footnote{Vgl. den Anhang A.6 Befragung der Friedrich-Schiller-Universität, Jena zur Beschreibung der Internetwahlen.} Die Durchführung der Wahl wurde an Micromata\footnote{Siehe Webseite von Micromata.} ausgelagert, mit der eine Kooperationsvereinbarung abgeschlossen wurde. Zuvor galt dort eine generelle Briefwahl, die sehr hohe Kosten verursacht hat. Die Internetwahl sollte eine Kostensenkung bewirken und als Testlauf für deren Ausweitung auf die gesamten Hochschulwahlen dienen.

Elektronische Wahlen an Hochschulen

hat Micromata die Stimmzettel in das Wahlsystem eingespielt. Die elektronischen Stimmzettel wurden abschließend vom Wahlamt kontrolliert.

Erkenntnisse. Die Durchführung der Internetwahl verlief ohne technische Probleme. Es wurden keine Wahlhelfer benötigt und der Verwaltungsaufwand konnte um die Hälfte reduziert werden. Die Kosten der Wahl waren zwar aufgrund der Kooperationsvereinbarung geringer, grundsätzlich wird aber eine Senkung der Kosten nicht erreicht. Auch auf die Wahlbeteiligung hat die Internetwahl keine Auswirkungen gehabt. In Zukunft ist geplant, die gesamten Hochschulwahlen an der Friedrich-Schiller-Universität mit Polyas durchzuführen.

4.7 Erfahrungen aus den Hochschulwahlen

Grundvoraussetzung für die Durchführung von elektronischen Wahlen ist, dass sie auch mehrheitlich gewollt sind. Wird, wie in Österreich, ein elektronisches Wahlsystem gegen den Willen der Wähler aufgesetzt, muss damit gerechnet werden, dass diese alle technischen und rechtlichen Mittel ausschöpfen, um die elektronischen Wahlen zu verhindern. Daher ist zunächst in einer Diskussion mit allen Beteiligten festzustellen, ob der Wille zur Durchführung elektronischer Wahlen in der beabsichtigten Form vorhanden ist und das elektronische Wahlsystem akzeptiert wird.

verdeutlichen aber, dass neben der Technik auch die organisatorischen Maßnahmen geprüft und gesichert werden müssen, um Fehler beim Erstellen des Wählerverzeichnisses und der elektronischen Stimmzettel zu verhindern.

Gute Erfahrungen werden mit der Scannerauswertung in Hannover gemacht, wobei die Menge der auszuwertenden Stimmzettel im Vergleich zur TU Darmstadt sehr gering ist.

Oft wird als Argument für Internetwahlen die Erhöhung der Wahlbeteiligung genannt. Diese konnte bei den durchgeführten Hochschulwahlen jedoch nicht beobachtet werden und ist daher nicht zu erwarten.

106 Dies konnte auch bei der Wahl an der Université Catholique de Louvain (UCL) in Belgien festgestellt werden, wo von ca. 4.000 Internetwählern über 97 % von zu Hause aus gewählt haben, vgl. Adida et al. (2009), S. 12.
5 Kosten-Nutzen-Analyse für elektronische Wahlen an der TU Darmstadt

5.1 Festlegung der Kriterien für die Kosten-Nutzen-Analyse

Bei der Kosten-Nutzen-Analyse der Wahloperation werden gleichermaßen quantitative und qualitative Faktoren berücksichtigt. Zu ersteren gehören die Investitionskosten und die Durchführungskosten der Wahl, zu den letzteren der organisatorische Aufwand, die Einhaltung der Wahlgrundsätze, die Transparenz des Wahlverfahrens, die Einfachheit der Wahlhandlung und die rechtliche Zulässigkeit.

Weitere wichtige Kriterien sind die Sicherheit und Akzeptanz der Wahlverfahren. Diese ergeben sich aus den Wahlgrundsätzen bzw. der Transparenz und werden daher nicht gesondert untersucht werden.

5.1.1 Investitionskosten

5.1.2 Durchführungskosten

Die Durchführungskosten der Wahl sind die Kosten, die immer wieder für die Durchführung von Wahlen anfallen. Regelmäßig entstehen Kosten für das eingesetzte Personal, das verbrauchte Material oder sonstige in Anspruch genommene Leistungen. Verschiedene Wahlsysteme verursachen unterschiedliche Arten von Kosten in unterschiedlicher Höhe.

5.1.3 Organisatorischer Aufwand

5.1.4 Einhaltung der Wahlgrundsätze

Eine wesentliche Rolle bei der Durchführung demokratischer Wahlen nimmt die Wahrung der Wahlgrundsätze ein. Zwar können sich die TU Darmstadt und die Studierendenschaft ihre Wahlordnungen selbst gestalten und haben so einen gewissen rechtlichen Handlungsspielraum, jedoch haben die Wahlgrundsätze einen sehr hohen Stellenwert und sind durch das Hessische Hochschulgesetz vorgegeben. Nicht zuletzt bestimmen die Wahlgrundsätze wesentlich die Sicherheitsanforderungen an das Wahlsystem. Eine ungeklärte Fragestellung hierbei ist, welche technischen und organisatorischen Anforderungen erfüllt sein müssen, damit die Wahlgrundsätze rechtlich als eingehalten gelten. Da kein Wahlsystem, einschließlich Urnenwahl, perfekt ist, ist es zweckmäßig, ein gewisses Sicherheitsniveau festzulegen, das es zu erreichen gilt.107 Das Dezernat für Hochschulrecht setzt hierbei grundsätzlich dieselben Maßstäbe an wie etwa bei den Bundestagswahlen.108 Die Wahlgrundsätze der TU Darmstadt lauten: geheim, frei, gleich und unmittelbar.109

107 Vgl. Helbach et al. (2007), S. 438.
108 Vgl. Anhang A.2 \textit{Befragung des Dezernats für Hochschulrecht}, Frage 3.
109 Vgl. WOTUD (2004), § 28 \textit{Wahlen zur Hochschulversammlung}, Abs. 1.
5.1.4.1 Geheime Wahl

5.1.4.2 Freie Wahl

Freie Wahl bedeutet, dass „jeder Wähler sein Wahlrecht ohne Zwang oder sonstige unzulässige Beeinflussung von außen ausüben kann“. Demgemäß unbeeinflusst entscheidet nur er selbst, ob und für wen er seine Stimme abgibt.

5.1.4.3 Gleiche Wahl

5.1.4.4 Unmittelbare Wahl

Die unmittelbare Wahl besagt, dass die zur Wahl stehenden Kandidaten direkt von den Wählern bestimmt werden. Es gibt keine Instanz zwischen Wählern und Kandidaten, die die Zusammensetzung des Gremiums festlegen.\(^{115}\)

Insofern hängt der Grundsatz der unmittelbaren Wahl vom Wahlverfahren ab – also den Regeln nach denen die Gremien gewählt und zusammengesetzt werden – nicht aber vom Wahlsystem selbst. Da die Unmittelbarkeit der Hochschulwahlen an der TU Darmstadt stets gegeben ist, wird diese nicht weiter berücksichtigt.

5.1.5 Transparenz des Wahlsystems

Ebenso wichtig wie die bloße Einhaltung der Wahlgrundsätze ist die Befähigung aller Wahlbeteiligten nachzuprüfen, dass die Wahlgrundsätze tatsächlich eingehalten werden. Insbesondere ist der gesamte Wahlablauf, von der Stimmabgabe bis hin zur Auszählung und Ergebnisbekanntgabe, transparent zu gestalten, so dass das Zustandekommen des Wahlergebnisses für alle nachvollziehbar ist. Auch die Wahrung des Wahlgeheimnisses muss für den Wähler ersichtlich sein, damit er seine Stimme frei abgeben kann. Transparente Wahlsysteme schaffen Vertrauen bei den Wahlbeteiligten und haben so großen Einfluss auf deren Akzeptanz.

5.1.6 Einfachheit der Wahlhandlung

5.1.7 Rechtliche Rahmenbedingungen

Für die Durchführung der Hochschulwahlen wird ein rechtlicher Rahmen vorgegeben. Die rechtlichen Rahmenbedingungen hierfür bilden das Hessische Hochschulgesetz, die Wahlordnung der TU Darmstadt und die Satzung der Studierendenschaft. Das HHG sieht vor, dass die Universitätsversammlung und die Fachbereichsräte in freier, gleicher, geheimer und unmittelbarer Wahl von den jeweiligen Mitgliedern nach den Grundsätzen der Verhältniswahl

\(^{115}\) Vgl. Will (2002), S. 151.
gewählt werden und verweist im Übrigen auf die Wahlordnung. Auf die Gestaltung des HHG, das vom Hessischen Landtag erlassen wird, hat die TU Darmstadt keinen Einfluss, so dass diese Vorgaben als gegeben und bindend betrachtet werden. Die WOTUD und die StSTUD dagegen können von der Universitätsversammlung bzw. vom Studierendenparlament mit einer einfachen Mehrheit geändert werden. Die wesentlichen Vorgaben der Wahlordnung sind die öffentliche Auszählung und die doppelte Zählung der Stimmen von voneinander unabhängigen Wahlhelfern.

Die Untersuchung der rechtlichen Rahmenbedingungen soll zeigen, inwiefern die verschiedenen Wahlsysteme mit dem HHG vereinbar sind, welche Änderungen in der WOTUD und in der StSTUD notwendig sind und inwiefern diese auch umgesetzt werden können. Dabei wird davon ausgegangen, dass das Erreichen der benötigten Mehrheiten mit zunehmender Lockerung der Wahlordnung bzw. der Satzung schwieriger wird.

5.1.8 Zusammenfassung der Kriterien

Mit der Transparenz des Wahlablaufs, der Einfachheit der Wahlhandlung und den rechtlichen Rahmenbedingungen werden die gesellschaftlichen und rechtlichen Aspekte untersucht. Diese sind entscheidend für die Akzeptanz bei den Wählern. Erst wenn der Wähler sich sicher sein kann, dass seine Stimme gewertet und das Wahlergebnis korrekt ermittelt wird, wird er das

116 Vgl. HHG (2009), § 35 Wahlen sowie die Grundordnung der TU Darmstadt (2005), § 1 Universitätsversammlung, Abs. 3, Satz 2.
Wahlergebnis akzeptieren. Auch eine einfache und bequeme Stimmabgabe kann zur Akzeptanz des Wahlsystems beitragen, wohingegen eine komplizierte Handhabung häufig auf Ablehnung stößt. Rechtliche Sicherheit wird durch die Regulierung der Wahl erreicht. Die rechtlichen Vorgaben müssen unabhängig vom Wahlsystem erfüllt werden und können nicht beliebig geändert werden.

5.2 Beurteilung der Wahlsysteme für die TU Darmstadt

Zuerst wird die Urnen- und Briefwahl mit den vorgestellten Kriterien bewertet und somit eine Ist-Analyse aufgestellt. Dann folgt die Analyse der elektronischen Wahlsysteme. Hierzu werden geeignete, auf dem Markt verfügbare Lösungen für elektronische Wahlgeräte, papierbasierte Stimmenzählgeräte und Internetwahl systeme ausgewählt und für die Durchführung der Hochschulwahlen an der TU Darmstadt bewertet.

5.2.1 Urnen- und Briefwahl

Die Urnen- und Briefwahl sind die Wahlformen, die derzeit für die Durchführung der Hochschulwahlen an der TU Darmstadt eingesetzt werden. Die Grundlagen für die Analyse bilden die Befragung des Wahlamts¹¹⁹ und die eigene Beobachtung der Wahldurchführung.

5.2.1.1 Investitionskosten

Für die Durchführung der Urnen- und Briefwahl müssen keine Investitionen getätigt werden.

5.2.1.2 Durchführungskosten

¹¹⁹ Siehe Anhang A.1 Befragung des Wahlamts.

Kosten des Wahlamts (jährlich)	60.000 €
Papier- und Druckkosten	300 €
Verpflegung	an den Wahltagen 200 €, während der Auszählung 100 €
Opportunitätskosten durch Bereitstellung	von 80 Wahlhelfern für die Wahltage 4.000 €, von 40 Wahlhelfern für die Auszählung 2.000 €

Gesamte Kosten der Wahldurchführung 66.600,00 €

Für den Versand der Briefwahlunterlagen werden keine Kosten veranschlagt, da diese an die Beschäftigten der TU Darmstadt per Hauspost zugeschickt werden und die Zahl der Briefwähler unter den Studenten verschwindend gering ist.

5.2.1.3 Organisatorischer Aufwand

Die organisatorischen Aufgaben bei der Durchführung von Wahlen wurden in Kapitel 2.2.4 ausführlich beschrieben. Hier werden nur noch die Themen behandelt, die besonders aufwendig, problembehaftet oder noch optimierbar sind.

Wahlvorbereitung. Zur öffentlichen Einsichtnahme wird ein papiernes Wählerverzeichnis erstellt. Dieses wird so gut wie gar nicht genutzt, so dass hierfür viel Papier unnötig verbraucht wird. Ebenso entsteht Papierverschwendung durch übrig gebliebene Stimmzettel.

Einen hohen Aufwand erfordert die Prüfung der eingereichten Vorschlaglisten auf Vollständigkeit und Zulässigkeit. Dabei ist vor Allem zu überprüfen, ob die einzelnen Wahlbewerber in den jeweiligen Wahlbereichen passiv wahlberechtigt sind. Auch die Unterstützerlisten für die Vorschlaglisten, die erstmalig bei den Hochschulwahlen antreten, müssen überprüft werden. Jedes Jahr werden etwa zwei neue Vorschlaglisten eingereicht. Als besonders aufwendig erweist sich die manuelle Erstellung der zugelassenen Vorschlaglisten,

Wahlnachbereitung. Analog zur Erstellung der Vorschlaglisten, Stimmzettel und Strichlisten in der Wahlvorbereitung sind die Ergebnislisten für die verschiedenen Gremien, Gruppen und Fachbereiche zu erstellen.

5.2.1.4 Geheime Wahl

\(^{120}\) Vgl. Kapitel 2.2.1 *Auswahl der zu betrachtenden Wahlen*.

5. Kosten-Nutzen-Analyse für elektronische Wahlen an der TU Darmstadt
5.2.1.5 Freie Wahl

Dagegen wird bei der Briefwahl der Stimmzettel im unkontrollierten Umfeld des Wählers ausgefüllt. Hierdurch kann der Wähler bei der Stimmabgabe von Freunden oder Arbeitskollegen beeinflusst oder gar zu einer bestimmten Wahlentscheidung gezwungen werden. Eine weitere Gefahr, die durch die Nachweisbarkeit der Stimmabgabe entsteht, ist der Kauf bzw. Verkauf von Stimmen.\(^{121}\)

5.2.1.6 Gleiche Wahl

Ausschluss von Wahlberechtigten. Die Urnenwahl ist für alle Wähler zugänglich. Wer im Wahlzeitraum keine Möglichkeit hat die Wahllokale aufzusuchen, wie z.B. Studenten im Ausland, kann die Briefwahl zur Stimmabgabe nutzen. Dadurch werden keine Wählergruppen ausgeschlossen.

Des Weiteren ist die manuelle Auszählung fehleranfällig. Zwar soll ein Verzählen durch die obligatorische Gegenprobe vermieden werden, jedoch kann nicht ausgeschlossen werden,

\(^{121}\) Vgl. Krimmer/Volkamer (2005), S. 228.
dass diese in einzelnen Fällen infolge eines ständigen Verzählns ausgelassen oder bei kleinen Abweichungen zurecht gebogen wird.

In dieser Hinsicht weist die Urnen- und Briefwahl eindeutige Schwächen auf. Diese betreffen jedoch nur einen sehr geringen Anteil der Stimmen und sind nicht systematisch, so dass der Wählerwille annähernd wiedergegeben wird.

Bei der Briefwahl muss darauf vertraut werden, dass die Wahlbriefe tatsächlich und rechtzeitig zugestellt werden. In Deutschland sind nach einem Tag 95 % aller Briefe zugestellt und nach zwei Tagen 99 %. Europaweit sind innerhalb von drei Tagen 97 % der Briefe ausgeliefert122, so dass diese Voraussetzung als erfüllt betrachtet werden kann. Ebenso kann angenommen werden, dass das Wahlamt und die Mitglieder des Wahlvorstands wegen ihrer Neutralität, Unabhängigkeit und gegenseitigen Kontrolle ordnungsgemäß mit den Wahlbriefen verfahren.

Positiv hervorzuheben ist, dass die papiernen Stimmzettel als Beleg für das Wahlergebnis dienen und eine Nachzählung möglich ist.

\textit{Manipulation an Stimmen und am Wahlergebnis.} Zu Wahlbeginn kann sich die Öffentlichkeit von den leeren Wahlurnen überzeugen. Anschließend können zu den Wahlzeiten der Wahlvorstand, die Wahlhelfer und Wahlbeobachter den Ablauf der Wahlen kontrollieren. Außerhalb der Wahlzeiten bewahrt der Wahlvorstand die versiegelten Wahlurnen auf.

122 Vgl. Krimmer/Volkamer (2005), S. 229.
Demnach sind Manipulationen bei der Urnenwahl in überschaubarem Ausmaß zwar nicht auszuschließen, insgesamt gilt sie aber aufgrund ihrer Öffentlichkeit und der gegenseitigen Kontrolle als relativ sicher.

5.2.1.7 Transparenz des Wahlsystems

5.2.1.8 Einfachheit der Wahlhandlung

Bei der Urnenwahl bekommen die Wähler ihre Stimmzettel ausgehändigt, füllen diese in der Wahlkabine aus und werfen sie nach der Authentifizierung in die Wahlurne. Dieses Verfahren ist allgemein bekannt und sollte keine Schwierigkeiten bereiten. Ebenso einfach ist die Beantragung der Briefwahl. Mit dem Versand der Briefwahlunterlagen wird auch eine verständliche Anleitung mitgeschickt, die auf das Unterschreiben der Erklärung zur Briefwahl hinweist und wie bzw. womit Wahlumschlag und Wahlbriefumschlag zu befüllen sind.

123 Vgl. Wilm (2009), S. 79 f. und Ondrisek (2009), S. 376.
124 Siehe die Stimmzettel im Anhang A.9 Muster-Stimmzettel für Hochschulwahlen an der TU Darmstadt.
dienen die Wahlentscheidung nicht eindeutig hervorgeht. So werden beispielsweise Kreuze zwischen zwei Felder gesetzt oder Felder ausgemalt. In letzterem Fall könnte eine beabsichtigte Stimmabgabe gemeint sein, oder aber das Löschen einer versehentlich abgegebenen Stimme.

5.2.1.9 Rechtliche Rahmenbedingungen

Die Urnen- und Briefwahl ist in der Wahlordnung der TU Darmstadt bzw. in der Satzung der Studierendenverbindung verankert.

5.2.2 Elektronische Wahlgeräte

125 junk voting bezeichnet das Abgeben von nicht ernst gemeinten Stimmen.
126 Siehe Webseite der HSG Wahltechnik.
128 Vgl. Fox (2009), S. 114.
129 Vgl. die Pressemitteilungen und Veröffentlichungen der HSG Wahltechnik (#1, #2, #3).
Sicherheitsmängel bekannt geworden sind. In einer eigenen Untersuchung hat die niederländische Initiative *Wij vertrouwen stemcomputers niet*\(^{130}\) in Zusammenarbeit mit dem *Chaos Computer Club Berlin* (CCCB)\(^ {131}\) die Sicherheitsrisiken und Manipulationsmöglichkeiten an einem *Nedap*-Wahlgerät des Modells *ES3B*, das bei den Wahlen in den Niederlanden eingesetzt wurde, aufgezeigt.\(^ {132}\) Während der CCCB mit dem Verweis auf einen Bericht der niederländischen Prüfbehörde *Toegepast Natuurwetsenschappelijk Onderzoek* (TNO) behauptet, das Modell *ES3B* unterscheide sich nur unwesentlich von den Modellen *ESD1* und *ESD2*,\(^ {133}\) widerspricht dem die PTB.\(^ {134}\)

Nachfolgend wird untersucht, inwieweit die Wahlgeräte von *Nedap* für die Hochschulwahlen anstelle der Urnenwahl geeignet sind. Da die *HSG Wahlsysteme* für eine Befragung nicht zur Verfügung stand, liegen keine offiziell bestätigten Informationen zum Wahlgerät, den Kosten und den verschiedenen Beschaffungs- und Finanzierungsalternativen vor. Auch konnte nicht abschließend geklärt werden, ob die Hochschulwahlen überhaupt mit den *Nedap*-Wahlgeräten durchgeführt werden können. Vor allem bleibt unklar, ob aufgrund der hohen Anzahl an Wahlbereichen die gruppen- und fachbereichsabhängige Zusammenstellung der Stimmzettel umgesetzt werden kann.

5.2.2.1 Investitionskosten

\(^{130}\) Siehe Webseite der Initiative *Wij vertrouwen stemcomputers niet*.

\(^{131}\) Siehe die Webseite des *Chaos Computer Club Berlin*.

\(^{132}\) Siehe den entsprechenden Sicherheitsbericht von Gonggrijp et al. (2006).

\(^{133}\) Vgl. die Beschreibung der Wahlgeräte *ESD1*, *ESD2* und *ES3B* vom CCCB und den entsprechenden Bericht vom TNO.

\(^{134}\) Vgl. Richter (2007), S 442.

\(^{135}\) Vgl. Kurz/Rieger (2009), S. 86.
5.2.2.2 Durchführungskosten

<table>
<thead>
<tr>
<th>Kosten des Wahlamts (jährlich)</th>
<th>60.000 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verpflegung an den Wahltagen</td>
<td>100 €</td>
</tr>
<tr>
<td>Opportunitätskosten durch Bereitstellung von 40 Wahlhelfern für die Wahlstage</td>
<td>2.000 €</td>
</tr>
<tr>
<td>Gesamte Kosten der Wahldurchführung</td>
<td>62.100,00 €</td>
</tr>
</tbody>
</table>

Tabelle 6: Durchführungskosten der Wahl mit Wahlgeräten

5.2.2.3 Organisatorischer Aufwand

Tabelle 5: Investitionskosten beim Einsatz von Wahlgeräten
des Stimmzettels erstellt, die auf dem Bedienpult angebracht wird. Auf diese Weise muss jedes Wahlgerät einzeln vorbereitet werden.136

Wahlnachbereitung. In der Wahlnachbereitung werden die Stimmenmodule mit der Programmier- und Ausleseeinheit ausgelesen. Mit einer Software wird das Gesamtergebnis berechnet und die Ergebnislisten für die Veröffentlichung erstellt.138 Zur Kontrolle wird das ermittelte Gesamtergebnis mit den Ausdrucken der einzelnen Wahlgeräte verglichen. Die Stimmenmodule werden zusammen mit der Wahlniederschrift bis zum Ablauf der

136 Vgl. Schrepf/Greif/Richter (2009), S. 90 und die Beschreibung der Wahlgeräte *ESD1*, *ESD2* und *ES3B* vom CCCB zur Konfiguration der Wahlgeräte.

137 Vgl. die Bedienungsanleitung für die *Nedap*-Wahlgeräte *ESD1* und *ESD2*.

138 Vgl. die Beschreibung der Wahlgeräte *ESD1*, *ESD2* und *ES3B* vom CCCB.
Aufbewahrungsfrist archiviert. Auch die Wahlgeräte selbst müssen fern von Unbefugten bis zur nächsten Wahl aufbewahrt werden.

5.2.2.4 Geheime Wahl

5.2.2.5 Freie Wahl

Wie bei der Urnenwahl wird der Grundsatz der freien Wahl durch die unbeobachtete Stimmabgabe und die geheime Wahl erfüllt.

5.2.2.6 Gleiche Wahl

Im Folgenden wird untersucht, wie sich der Einsatz der Nedap-Wahlgeräte auf die gleiche Wahl auswirkt. Zuerst wird geprüft, ob durch Wahlgeräte Wähler von der Wahl ausgeschlossen werden. Für die darauffolgende Bewertung der technischen Zuverlässigkeit und der Manipulationssicherheit werden die Überprüfungen durch die PTB einerseits und durch die Initiative Wij vertrouwen stempcomputers niet und den CCCB andererseits diskutiert.

140 Vgl. Schrepf/Greif/Richter (2009), S. 90 f.
Nicht gewertete Stimmen aus organisatorischen oder technischen Gründen. Aus funktionstechnischer Sicht verlangt die gleiche Wahl, dass die abgegebenen Stimmen den begünstigten Wahlbewerbern richtig zugeordnet werden, die Stimmen sicher gespeichert werden und das Wahlergebnis korrekt berechnet wird. Die entsprechenden Anforderungen wurden bei den Modellen ESD1 und ESD2 von der PTB mittels Analysen der Hard- und Software sowie anhand von Gerätetests bescheinigt. Auch wurden beim Einsatz der geprüften Wahlgeräte keine Fehler festgestellt.\(^{141}\)

Mit dem Wahlgerät kann daher das exakte Wahlergebnis berechnet werden. Im Vergleich zur manuellen Auszählung bei der Urnenwahl sind kein Verlust von Stimmzetteln und auch kein Verzählen möglich. Da die Wahlberechtigung aber weiterhin manuell überprüft wird und die Wähler manuell im elektronischen Wählerverzeichnis abgehakt werden, kann dies immer noch in einzelnen Fällen vergessen werden.

Manipulation an Stimmen und am Wahlergebnis. Zwar hat die PTB in ihren Überprüfungen die Sicherheit der Wahlgeräte stets bestätigt, jedoch niederländische Initiative Wij vertrouwen stempcomputers niet hat zusammen mit dem CCCB sämtliche Manipulationsmöglichkeiten an einem Wahlgerät vom Modell ES3B aufgezeigt.\(^{142}\)

Die Wahlsoftware der Wahlgeräte befindet sich auf einem programmierbaren Speicherbaustein. Um zu zeigen, dass das Wahlgerät jeden beliebigen Programmc ode ausführen kann, hat die Gruppe ein Schachspiel auf den Speicherbaustein programmiert und in das Wahlgerät eingebaut. Damit war es möglich die Spielfiguren über den Bedienpult zu bewegen, wobei die Spielzüge auf dem Display angezeigt wurden. Anschließend wurde die Wahlsoftware auf dem Speicherbaustein ausgelesen und so modifiziert, dass damit Wahlen manipuliert werden können, indem etwa ein vorgegebenes Wahlergebnis berechnet wird. Dabei wurde auch eine Logik zur Erkennung von Testwahlen umgesetzt. Werden beispielsweise viele Stimmen in kurzer Zeit abgegeben oder das Gerät häufig ein- und ausgeschaltet, wird das tatsächliche Ergebnis berechnet. Um eine Wahl dementsprechend zu fälschen muss der originale Speicherbaustein durch einen Speicherbaustein mit der manipulierten Wahlsoftware ausgetauscht werden. Wie vom CCCB in einem Video demonstriert, kann der Austausch in kurzer Zeit ohne besondere technische Kenntnisse durchgeführt werden.\(^{143}\) Solche Manipulationen sollen durch die am Wahlgerät angebrachten

\(^{141}\) Schrepf/Greif/Richter (2009), S. 89.

\(^{143}\) Austausch der Wahlsoftware eines Nedap-Wahlgeräts in einer Minute.
Siegel verhindert werden. Jedoch stellt die Gruppe der Wahlgerätegegner fest, dass die verwendeten Siegel keine wirksamen Authentizitätsmerkmale aufweisen und einfach kopiert werden können. Außerdem wird durch Wahlbeobachtungen von Wahlen berichtet, bei denen keine Überprüfung der Siegel statt fand.144 Auch der Vergleich der Prüfsummen bietet keinen ausreichenden Schutz, da dieser genauso wie das Wahlergebnis manipuliert werden kann.

5.2.2.7 Transparenz des Wahlsystems

144 Vgl. Kurz/Rieger (2009), S 86.
am Wahlgerät erkannt werden. Diese bieten jedoch keinen ausreichenden Schutz, wenn sie einfach nachgebildet werden können.146

5.2.2.8 Einfachheit der Wahlhandlung

146 Vgl. Ondrisek (2009), S. 373 f. und Kurz/Rieger (2009), S. 84, 87.

147 Vgl. Fox (2009), S. 114 und Buchmann/Roßnagel (2009), S. 543 f.

Bedienpult abgebildet, wobei nur jene aktiviert sind, für die der Wähler auch wahlberechtigt ist. Dies könnte den Wähler verwirren. Andererseits sind die abgegebenen Stimmen eindeutig gültig oder ungültig.

5.2.2.9 Rechtliche Rahmenbedingungen

¹⁴⁹ Vgl. HSG Wahlsysteme (2009), S. 3.
¹⁵¹ Art. 38 i.V.m. Art. 20 Abs. 1 und 2 GG, vgl. auch Buchmann/Roßnagel (2009), S. 543.

5.2.3 Papierbasierte Stimmenzählgeräte

153 Siehe Webseite von *Electric Paper*.
154 Siehe Webseite von *EvaSys Education*.

Auszählung mit dem Scanner nicht möglich. Da dies eine erhebliche Einschränkung darstellt, wird für den weiteren Verlauf dieser Arbeit angenommen, dass die Scannerauswertung auch für Listenwahlen implementiert wird.

Beide Varianten, die alleinige Verwendung eines EvaSys-Nutzerkontos durch die HDA und der Einsatz von UniWahl4, werden im Folgenden behandelt. Die Analyse stützt sich dabei im Wesentlichen auf den Befragungen der HDA161, Electric Paper162 und Prof. Frens Peters163.

Der digitale Wahlstift wird nicht betrachtet, da er bezüglich der Transparenz ähnliche Schwächen wie das Wahlgerät aufweist. Der Wähler kann die korrekte Speicherung und Auswertung seiner Stimme nicht kontrollieren. Dabei bilden die elektronisch gespeicherten Stimmen die Grundlage für die Berechnung des Gesamtergebnisses. Die physischen Stimmzettel werden dagegen meist nur stichprobenartig ausgezählt.

5.2.3.1 Investitionskosten

161 Siehe Anhang A.3 Befragung der HDA.
162 Siehe Anhang A.4 Befragung von Electric Paper.
163 Siehe Anhang A.5 Befragung von Prof. Frens Peters, FH Hannover.
164 955 € zzgl. Mehrwertsteuer, Stand: 01. Oktober 2010.
165 Vgl. den Preisvergleich bei idealo.
EvaSys-System an der TU Darmstadt und kauft die Scan-Lizenzen. Die Kosten werden an die nutzende Einrichtung weitergegeben.

<table>
<thead>
<tr>
<th>Scannerauswertung</th>
<th>EvaSys</th>
<th>UniWahl4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner (falls erforderlich)</td>
<td>(2.400 €)</td>
<td>(2.400 €)</td>
</tr>
<tr>
<td>Scan-Lizenz (falls erforderlich)</td>
<td>(1.136,45 €169)</td>
<td>-</td>
</tr>
<tr>
<td>UniWahl4 inkl. VividForms</td>
<td>-</td>
<td>4.000 €</td>
</tr>
<tr>
<td>Gesamte Investitionskosten</td>
<td>0,00 € (3.536,45 €)</td>
<td>4.000,00 € (6.400,00 €)</td>
</tr>
</tbody>
</table>

Tabelle 7: Investitionskosten bei der Scanner-Methode

5.2.3.2 Durchführungskosten

166 Vgl. Anhang A.5 Befragung von Prof. Frens Peters, FH Hannover, Frage 2.
festgestellt werden. Die geringere Anzahl an Wahlhelfern führt zu niedrigeren Verpflegungs- und Opportunitätskosten während der Auszählung.

Zusätzliche Kosten fallen für die Bereitstellung eines EvaSys-Nutzerkontos durch die HDA an, welches für die selbständige Durchführung der Hochschulwahlen durch das Wahlamt benötigt wird. Die jährlichen Kosten könnten nach einer groben Schätzung der HDA etwa 1.000 € betragen. Beim Einsatz von UniWahl4 besteht die Möglichkeit, einen Wartungsvertrag für die Software abzuschließen. Dieser kostet jährlich 360 € und bietet eine regelmäßige Aktualisierung der Software, Änderungen zum Handbuch bzw. ein neues Handbuch bei größeren Änderungen und kostenlose Unterstützung bei Problemen.170

<table>
<thead>
<tr>
<th>Kosten des Wahlamts</th>
<th>EvaSys</th>
<th>UniWahl4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papier- und Druckkosten</td>
<td>600 €</td>
<td>600 €</td>
</tr>
<tr>
<td>Verpflegung an den Wahltagen</td>
<td>200 €</td>
<td>200 €</td>
</tr>
<tr>
<td>während der Auszählung</td>
<td>25 €</td>
<td>25 €</td>
</tr>
<tr>
<td>Opportunitätskosten durch Bereitstellung von 80 Wahlhelfern für die Wahlage</td>
<td>4.000 €</td>
<td>4.000 €</td>
</tr>
<tr>
<td>von 10 Wahlhelfern für die Auszählung</td>
<td>500 €</td>
<td>500 €</td>
</tr>
<tr>
<td>Nutzungskosten für EvaSys bei der HDA</td>
<td>1.000 €</td>
<td>-</td>
</tr>
<tr>
<td>Wartungskosten für UniWahl4 (optional)</td>
<td>-</td>
<td>(360 €)</td>
</tr>
<tr>
<td>Gesamte Kosten der Wahldurchführung</td>
<td>66.325,00 €</td>
<td>65.325,00 € (65.685,00 €)</td>
</tr>
</tbody>
</table>

Tabelle 8: Durchführungskosten der Wahl mit der Scannerauswertung

5.2.3.3 Organisatorischer Aufwand

Im Folgenden wird jeweils der organisatorische Aufwand bei der Durchführung der Hochschulwahlen mit EvaSys und UniWahl4 beschrieben. Dabei liegt das Hauptaugenmerk auf der Erstellung der zugelassenen Vorschlaglisten, Stimmzettel und Ergebnislisten und auf der Stimmenauszählung, die bei der Urnenwahl besonders aufwendig sind.

170 Vgl. den Bestellschein für UniWahl4 samt Preisliste.
In UniWahl4 werden die zu wählenden Gremien angelegt und dazu die wahlberechtigten Gruppen, die zugelassenen Kandidaten und die Anzahl der zu vergebenden Sitze angegeben. Zudem kann die eigene Wahlordnung durch verschiedene Einstellungen, wie z.B. Personen- oder Listenwahl, Sitzzuteilungsverfahren bei Listenwahl oder Vorgehen bei Stimmgleichheit, umgesetzt werden. Zusätzlich kann mit UniWahl4 ein Terminplan für die Durchführung der Wahlen angelegt und das Wählerverzeichnis importiert werden. Sind alle Daten eingegeben, werden die Stimmzettel generiert und mit einem Tastendruck in ein VividForms-Format umgewandelt, so dass sie vom Scanner ausgewertet werden können.

Um eine reibungslose Auszählung sicherzustellen ist der Scanvorgang bei beiden Lösungen vorab zu testen. Dabei muss überprüft werden, ob die erforderliche Druckqualität der Stimmzettel gegeben ist, die zu verwendende Stifte geeignet sind, wie sich das System bei unsauberen ausgefüllten Stimmzetteln verhält, welche verschiedenen Farben für die Stimmzettel verwendet werden können und, ob mehrfaches Auswerten immer dasselbe Ergebnis liefert. Die Testphase dient auch dazu, sich mit der Scansoftware und dem Scanner vertraut zu machen.

Wahlnachbereitung. Bei Verwendung von UniWahl4 werden die ermittelten Wahlergebnisse aus EvaSys importiert und die Ergebnislisten sowie die Sitzverteilungen werden automatisch
erstellt. Wird die Wahlunterstützungsoftware nicht verwendet, müssen die Wahlergebnisse in die Word-Vorlage für die offiziellen Ergebnislisten abgetippt werden, da die EvaSys-Auswertung Pflichtangaben wie die Anzahl der Wahlberechtigten und die Wahlbeteiligung nicht enthält. Zudem müssen die Sitzverteilungen mit Excel berechnet werden.

5.2.3.4 Geheime Wahl

Die geheime Wahl bei der Scanner-Methode erfolgt auf gleiche Weise wie bei der Urnenwahl. Sie wird durch die unbeobachtete Stimmabgabe in der Wahlkabine und das Einwerfen des Wahlumschlags in die Wahlurne sichergestellt.

5.2.3.5 Freie Wahl

Die Beurteilung der freien Wahl hängt allein vom Ablauf der Wahlhandlung ab. Dieser ist der gleiche wie bei der Urnenwahl und folgt auch hier aus der geheimen Stimmabgabe.

5.2.3.6 Gleiche Wahl

Nachfolgend werden die Auswirkungen der Scannerauswertung auf den Grundsatz der gleichen Wahl beschrieben.

Durch die automatisierte Stimmenauswertung entfällt die Gefahr des Verzählens. Gemäß den Vorgaben ausgefüllte Stimmzettel werden in der Regel fehlerfrei ausgewertet. Stimmzettel, die mit dem Scanner nicht eindeutig ausgewertet werden können, werden zur Sichtprüfung

171 Vgl. die technischen Daten des Canon DR-6010C.
angezeigt. Technische Probleme können durch eine mangelhafte Druckqualität und dunkelfarbene Stimmzettel entstehen. Dem vorbeugend sollten die zu verwendenden Stimmzettel und Stifte vor der Wahl getestet werden.

5.2.3.7 Transparenz des Wahlsystems

5.2.3.8 Einfachheit der Wahlhandlung

175 Vgl. das *Handbuch zur automatischen Stimmenauszählung mit VividForms und UniWahl4*, S. 21 f.
5.2.3.9 Rechtliche Rahmenbedingungen

Ein weiteres Problem stellen Kommentierungen oder sonstige Zusätze auf dem Stimmzettel dar. Diese bewirken die Ungültigkeit der Stimme, können aber vom Scanner nicht erkannt werden. Daher wird empfohlen, auf den Aushängen in den Wahlkabinen darauf hinzuweisen, dass die Wahlerscheidung ausschließlich durch das Ankreuzen der entsprechenden Felder erklärt wird. Alternativ können solche offensichtlich ungültigen Stimmzettel aber auch von Hand aussortiert und hinterher in das Wahlergebnis integriert werden.

5.2.4 Internetwahlsysteme

177 Vgl. Anhang A.5 Befragung von Prof. Frens Peters, FH Hannover, Frage 11.
178 Vgl. das Handbuch zur automatischen Stimmenauszählung mit VividForms und UniWahl4, S. 21 f.
179 Siehe Webseite von Polyas.
180 Siehe Webseite von Helios.
Nachfolgend werden zunächst die technischen Gegebenheiten an der TU Darmstadt für die Durchführung von Internetwahlen vorgestellt und die organisatorischen Überlegungen zur Gestaltung der Internetwahl erläutert. Anschließend werden die Internetwahlsysteme Polyas und Helios beschrieben und jeweils ein Szenario für deren Einsatz bei den Hochschulwahlen an der TU Darmstadt entwickelt.

\(^{181}\) Die TU-ID ist eine Kombination aus einer persönlichen Kennung und einem frei wählbaren Passwort.

\(^{182}\) Vgl. Anhang A.8 Befragung des HRZ, Frage 1 und die Beschreibung der TU-ID auf der Webseite.

\(^{183}\) Vgl. die Beschreibung des Single Sign On an der TU Darmstadt.

\(^{184}\) Vgl. Anhang A.8 Befragung des HRZ, Frage 5.

\(^{185}\) Vgl. Anhang A.8 Befragung des HRZ, Frage 4.
Hochschulrechenzentrums für die Stimmabgabe freigehalten und mit entsprechenden Wahlkabinen ausgestattet werden. Diese können dann als Wahlkiosk betrachtet werden.

<table>
<thead>
<tr>
<th>Authentifizierung</th>
<th>TAN</th>
<th>Elektronischer Ausweis</th>
<th>Biometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-Wahlsoftware</td>
<td>Webbrowser</td>
<td>Wahlprogramm</td>
<td>Java-Applet</td>
</tr>
<tr>
<td>Infrastruktur</td>
<td>Eigene Bereitstellung</td>
<td>Gemeinsame Bereitstellung</td>
<td></td>
</tr>
<tr>
<td>Wahlkanal</td>
<td>Reine Internetwahl</td>
<td>Zusätzliche Internetwahl</td>
<td>Anstelle der Briefwahl</td>
</tr>
<tr>
<td>Ort der Wahlhandlung</td>
<td>Privat</td>
<td>Kiosk</td>
<td>Wahllokal</td>
</tr>
</tbody>
</table>

Abbildung 11: Gestaltung des Internetwahlsystems mit Polyas

Das Internetwahlsystem *Helios* ist als unabhängiges und gemeinnütziges Projekt mit dem Ziel von transparenten Wahlen entstanden und wird stetig weiterentwickelt.\(^ {189}\) 2010 wurde die

\(^{186}\) Siehe Webseite von *Polyas University*.
\(^{187}\) Vgl. Kapitel 3.3.2 *Anonymisierung der Stimme*.
\(^{188}\) Vgl. Grimm et al. (2009), S. 100.
\(^{189}\) Vgl. die *Helios-Beschreibung durch die Entwickler*.

76 5. Kosten-Nutzen-Analyse für elektronische Wahlen an der TU Darmstadt

190 Vgl. die Bekanntmachung über die Freigabe von Helios v3.
191 Vgl. Adida et al. (2009), S. 4.
192 Vgl. Kapitel 3.3.2 Anonymisierung der Stimme.
den übrigen Wahlbereichen aus dem Teilergebnis ermittelt werden. Deshalb ist eine separate Wahl für jeden Wahlbereich vorzuziehen. Für den Wähler bedeutet dies, dass er für jede einzelne Wahl die komplette Wahlprozedur durchlaufen muss.\(^\text{193}\)

Das beschriebene Internetwahlsystem mit *Helios* ist in *Abbildung 12* dargestellt. Da *Helios* auf Open Source basiert, können aber auch beliebige andere Authentifizierungs- und Anonymisierungsverfahren implementiert und sonstige Änderungen vorgenommen werden. Notwendig erscheinen dabei eine verbesserte Benutzeroberfläche für den Wähler\(^\text{194}\) und ein effizienteres Auszählprogramm\(^\text{195}\).

<table>
<thead>
<tr>
<th>Authentifizierung</th>
<th>TAN</th>
<th>Elektronischer Ausweis</th>
<th>Biometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-Wahlsoftware</td>
<td>Webbrowser</td>
<td>Wahlprogramm</td>
<td>Java-Applet</td>
</tr>
<tr>
<td>Infrastruktur</td>
<td>Eigene Bereitstellung</td>
<td>Gemeinsame Bereitstellung</td>
<td></td>
</tr>
<tr>
<td>Wahlkanal</td>
<td>Reine Internetwahl</td>
<td>Zusätzliche Internetwahl</td>
<td>Anstelle der Briefwahl</td>
</tr>
<tr>
<td>Ort der Wahlhandlung</td>
<td>Privat</td>
<td>Kiosk</td>
<td>Wahllokal</td>
</tr>
</tbody>
</table>

Abbildung 12: Gestaltung des Internetwahlsystems mit Helios

5.2.4.1 Investitionskosten

Bei der Beauftragung von *Micromata* wird das Internetwahlsystem *Polyas* mit dem Modul *Polyas University* zur Durchführung der Hochschulwahlen zur Verfügung gestellt. Investitionskosten fallen für eine Nutzung von *Polyas* nicht an.

Außerdem muss das Wahlsystem aufgesetzt und in die bestehende IT-Systemlandschaft des Hochschulrechenzentrums integriert werden. Hierfür wird jeweils ein (virtueller) Server für die Wahlberechtigungsprüfung und für die StimmenSpeicherung benötigt. Das HRZ beziffert die Kosten für die Server auf etwa 1.000 € und schätzt den Aufwand für Aufbau, Test und Dokumentation des Internetwahlsystems auf drei Personenmonate.\(^\text{196}\) Auch hier werden

\(^{193}\) Vgl. Kapitel 5.2.4.8 zum Ablauf der Wahlhandlung mit Helios.

\(^{195}\) Vgl. Adida et al. (2009), S. 3.

\(^{196}\) Vgl. Anhang A.8 Befragung des HRZ, Frage 12.
5.000 € je Personenmonat angenommen. Somit ergeben sich, wie in Tabelle 9 dargestellt, Kosten in Höhe von 21.000 €.

<table>
<thead>
<tr>
<th>Kosten für 2 Server</th>
<th>Polyas</th>
<th>Helios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installationskosten (3 PM)</td>
<td>-</td>
<td>1.000 €</td>
</tr>
<tr>
<td>Gesamte Investitionskosten</td>
<td>0,00 €</td>
<td>16.000,00 €</td>
</tr>
</tbody>
</table>

Tabelle 9: Investitionskosten bei Internetwahlen

5.2.4.2 Durchführungskosten

Die Kosten für die Nutzung von Polyas richten sich nach der Anzahl der wahlberechtigten Personen und betragen 0,68 € pro Wahlberechtigtem.\(^{197}\) Bei der Wahldurchführung mit Polyas bedeutet dies bei 20.000 Wahlberechtigten Wahlkosten in Höhe von 13.600 €. Die Wahlschreiben, die nun zusätzlich die TANs enthalten, können den Studenten weiterhin zusammen mit den Unterlagen zur Rückmeldung und den Bediensteten per Hauspost versendet werden, so dass keine zusätzlichen Portogebühren anfallen.

Bei der Durchführung der Wahlen mit Helios betreibt das HRZ die Wahlserver. Dabei ist vor Allem deren hohe Verfügbarkeit sicherzustellen. Das HRZ schätzt den Aufwand für den Betrieb der Server auf einen Personenmonat,\(^ {198}\) für den Kosten in Höhe von 5.000 € angenommen werden.

<table>
<thead>
<tr>
<th>Kosten des Wahlamts</th>
<th>Polyas</th>
<th>Helios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten für den Wahldienstleister</td>
<td>13.600 €</td>
<td>-</td>
</tr>
<tr>
<td>Kosten für den Betrieb und die Wartung der Server (1 PM)</td>
<td>-</td>
<td>5.000 €</td>
</tr>
<tr>
<td>Gesamte Kosten der Wahldurchführung</td>
<td>73.600,00 €</td>
<td>65.000 €</td>
</tr>
</tbody>
</table>

Tabelle 10: Durchführungskosten der Wahl bei Internetwahlen

\(^{197}\) Vgl. Anhang A.7 Befragung von Micromata, Frage 1.
\(^{198}\) Vgl. Anhang A.8 Befragung des HRZ, Frage 14.

200 Vgl. Adida et al. (2009), S. 6.

5.2.4.4 Geheime Wahl

202 Vgl. Anhang A.8 Befragung des HRZ, Frage 11.
2.048 Bit auch in näherer Zukunft als sicher.203 Bei Polyas erfolgt die Verschlüsselung über eine gesicherte SSL-Verbindung. SSL gilt ebenfalls als sicher, sofern die Sicherheitsparameter serverseitig optimal eingestellt sind.204 Ist die Stimme auf dem Wahlurnenserver gespeichert, erfolgt die Anonymisierung durch das Prinzip der Gewaltenteilung205. Die bei diesem Verfahren benötigte Zufallszahl, die die Zuordnung von Wähler und Stimme ermöglicht, wird nach der Stimmabgabe unveränderbar gelöscht. Unter der Annahme, dass die Wahlurnen- und Wahlberechtigungsserver nicht zusammenarbeiten, ist das Wahlgeheimnis danach dauerhaft erfüllt.206 Mit Helios werden die Stimmen vor der Übertragung über das Internet mit dem ElGamal-Verfahren für immer verschlüsselt. Entschlüsselt wird nur das Gesamtergebnis. Hierbei wird ein vertrauenswürdiger Wahlvorstand angenommen, der den Schlüssel nicht unerlaubterweise rekonstruiert. Für einen Angreifer von außen ist es praktisch unmöglich den Schlüssel mit einer Länge von 2.048 Bit207 zu ermitteln. Sollte es zu einem späteren Zeitpunkt dennoch gelingen, einzelne Stimmen auf dem \textit{Bulletin Board} zu entschlüsseln, können diese trotzdem nicht ohne Weiteres den Wählern zugeordnet werden, da die Stimmen nur unter einem zufälligen Pseudonym gespeichert sind.

Während mit kryptographischen Verschlüsselungsverfahren die Wahlentscheidung wirksam vor Dritten geschützt werden kann, stellt das Wahlendgerät des Wählers die größte Gefahrenquelle dar. Eine auf dem Rechner eingeschleuste Schadsoftware kann dazu genutzt werden, die Wahlentscheidung des Wählers aufzuzeichnen und dem Angreifer zuzusenden. Dasselbe Schadprogramm kann in automatisierter Form zum massenhaften Ausspähen von Stimmzetteln eingesetzt werden.208 Virenschanner bieten dabei auch keinen zuverlässigen Schutz, da diese nur bekannte Schadsoftware aufspüren können.209

\subsection*{5.2.4.5 Freie Wahl}

Bei der Internetwahl im privaten Umfeld des Wählers ist die unbeobachtete Stimmabgabe nicht sichergestellt. Der Wähler kann von den Anwesenden zu einer bestimmten Wahlentscheidung unter Druck gesetzt werden. Auch ein Stimmenkauf ist zwar theoretisch möglich, ist jedoch bei Hochschulwahlen nicht zu erwarten. Das Problem der beobachtbaren

\begin{itemize}
\item 203 Vgl. Schwenk (2010), S. 15.
\item 204 Vgl. Schwenk (2010), S. 83 f und 111.
\item 205 Vgl. Kapitel 3.3.2 \textit{Anonymisierung der Stimme}.
\item 206 Vgl. auch Krimmer/Volkamer (2005), S. 229 und Grimm et al. (2009), S. 100 zur Sicherstellung der geheimen Wahl bei Polyas.
\item 207 Vgl. Adida et al. (2009), S. 3.
\item 208 Vgl. Krimmer/Volkamer (2005), S. 226.
\item 209 Vgl. Schwenk (2010), S. 242.
\end{itemize}
Stimmabgabe kann mit Internetwahlsystemen durch vote updating gelöst werden. Dies ermöglicht dem Wähler, seine Stimme zu einem späteren Zeitpunkt erneut abzugeben, wobei nur die zuletzt abgegebene Stimme gewertet wird.210 Mit Helios ist vote updating möglich, wohingegen Polyas dies nicht unterstützt.

5.2.4.6 Gleiche Wahl

Im Folgenden werden die Auswirkungen der Internetwahl auf den Grundsatz der gleichen Wahl beschrieben.

Nicht gewertete Stimmen aus organisatorischen oder technischen Gründen. Die Ermittlung des korrekten Wahlergebnisses erfordert ein fehlerfreies Wahlsystem. Dieses ist durch entsprechende Qualitätssicherungsmaßnahmen durch die Entwickler sicherzustellen. Weitere Möglichkeiten zur Überprüfung der Software sind wie im Fall von Polyas eine Produktzertifizierung oder wie bei Helios die komplette Offenlegung des Quellcodes und die Verifizierungsmöglichkeiten bei der Wahl.212 Um Systemausfällen und Datenverlust infolge

210 Vgl. Helbach et al. (2007), S. 437.

212 Vgl. Kapitel 5.2.4.7 Transparenz zur Evaluierung und Zertifizierung von Polyas bzw. zur Verfizierung bei Helios.
von Hardwarefehlern vorzubeugen, wird ein Backup-System bereitgehalten und alle Wahldaten werden redundant gespeichert.\footnote{Vgl. Anhang A.8 \textit{Befragung des HRZ}, Frage 15.}

\footnotesize
\begin{itemize}
\item \footnotemark[213] Vgl. Anhang A.8 \textit{Befragung des HRZ}, Frage 15.
\item \footnotemark[214] Vgl. Adida (2009), S. 4.
\item \footnotemark[216] Vgl. Estehghari/Desmedt (2010).
\end{itemize}
5.2.4.7 Transparenz des Wahl systems

Bei dem Internetwahl system Helios wird Transparenz durch Verifizierung geschaffen. Die Idee dabei ist, dass der Wähler nicht auf die Sicherheit des Wahl systems vertrauen muss, sondern dies selbst überprüfen kann.\(^ {224}\) Nach der Auswahl der Kandidaten wird die Stimme zunächst verschlüsselt. Der Wähler kann dann zwischen der end gültigen Stimmabgabe und der Verifizierung seiner Stimme entscheiden. Mit der Verifizierung kann er überprüfen, ob seine

\(^{217}\) Siehe Webseite des BSI.
\(^{218}\) Vgl. Anhang A.7 Befragung von Micromata, Frage 27.
\(^{219}\) Siehe Webseite der Common Criteria.
\(^{221}\) Vgl. Volkamer et al. (2009), S. zur Zertifizierung von Wahl systemen und deren Vor- und Nachteilen.
\(^{223}\) Vgl. Anhang A.7 Befragung von Micromata, Frage 31 und 32.
\(^{224}\) Vgl. Volkamer et al. (2009) zur Verifizierung von Wahl systemen und deren Vor- und Nachteilen.

Im Vergleich zur Urnenwahl ist die Internetwahl für den durchschnittlichen Wähler relativ intransparent, da ihm in der Regel die technischen Kenntnisse zum Verständnis des Internetwahlsystems fehlen. Vielmehr ist er auf das Vertrauen in die Integrität des Wahlsystems und der beteiligten Personen angewiesen.226

5.2.4.8 Einfachheit der Wahlhandlung

Bei Polyas besteht die Stimmabgabe im Wesentlichen aus der Anmeldung am Wahlsystem mit der PIN/TAN-Kombination, der Auswahl der Kandidaten und der Bestätigung der Wahlentscheidung.227 Die Stimmzettel werden je nach Gruppe und Fachbereich nacheinander

225 Vgl. Adida (2008), S. 344.
226 Vgl. Gritzalis (2002), S.544.
227 Vgl. hierzu die Anleitung zur Polyas-Testwahl.

Bei den betrachteten Internetwahlsystemen kann die Stimme von jedem beliebigen PC mit Internetzugang und zu jeder Zeit während des Wahlzeitraums abgegeben werden. Somit bietet die Internetwahl dem Wähler eine maximale Flexibilität. Die Stimmabgabe ist in

wenigen Schritten möglich. Sie besteht hauptsächlich aus der Anmeldung am System, der Auswahl der Kandidaten und der Bestätigung der Stimme. Auch können keine Stimmzettel produziert werden, aus denen die Wahlabsicht nicht eindeutig hervor geht. Die Wähler werden vor einer ungültigen Stimmabgabe gewarnt. Darüber hinaus kann Blinden und Sehbehinderten über eine geeignete Schnittstelle die Stimmabgabe ohne fremde Hilfe ermöglicht werden. Polyas unterstützt dies bereits.231

5.2.4.9 Rechtliche Rahmenbedingungen

Die Internetwahlsysteme Polyas und Helios sind daraufhin zu untersuchen, ob sie die Einhaltung der Wahlgrundsätze und eine öffentliche Auszählung ermöglichen. Fraglich dabei ist, wie die Einhaltung dieser rechtlichen Anforderungen technisch überprüft werden soll und, ab wann sie als erfüllt betrachtet werden können. Auch stellt sich die Frage, in welchem Ausmaß auf die Integrität des Rechenzentrums und des Wahlvorstands zur Wahrung der Wahlgrundsätze vertraut werden darf.

231 Vgl. Anhang A.7 Befragung von Micromata, Frage 16.
Für die Durchführung von Internetwahlen können die WOTUD und die StSTUD so erweitert werden, dass sie erlauben, die Wahlen in elektronischer Form durchzuführen, sofern die Wahlgrundsätze eingehalten werden.\footnote{Vgl. Helbach et al. (2007), S. 435.} Ob dies tatsächlich der Fall ist, ist angesichts der aufgezeigten Argumente strittig. Entscheidend für die erfolgreiche Änderung der Wahlordnung bzw. der Satzung der Studierendenschaft ist aber, ob die Internetwahl gewollt ist und akzeptiert wird.\footnote{Vgl. Volkamer/Krimmer (2006), S. 102.} Da die Studenten einer Internetwahl kritisch gegenüber stehen, ist damit nicht zu rechnen.

5.3 Vergleich der Varianten

Die Urnenwahl bietet zwar keine absolute Sicherheit, jedoch legt sie die Messlatte für die elektronischen Wahlsysteme hoch.\footnote{Vgl. Wilm (2009), S. 79 f.} Außerdem besticht sie durch ihre Einfachheit und Transparenz für die Wähler. Als große Schwäche erweist sich der hohe organisatorische Aufwand sowie die Fehleranfälligkeit bei der Erstellung der Wahldokumente in der Wahlvorbereitung und bei der Auszählung. Bedenklich ist die Sicherheit der Briefwahl. Dies wird hingenommen, da sie kaum genutzt wird.

Abbildung 13: Bewertung und Vergleich der Wahlsysteme
6 Fazit

In dieser Arbeit wurde eine Kosten-Nutzen-Analyse für die Durchführung der Hochschulwahlen an der TU Darmstadt in elektronischer Form durchgeführt. Die Ergebnisse sollen im Folgenden zusammengefasst werden. Anschließend wird ein Ausblick für die Zukunft gegeben.

6.1 Zusammenfassung

6.2 Ausblick

Die Kosten-Nutzen-Analyse hat ergeben, dass die Scannerauswertung (derzeit) als einziges elektronisches Wahlsystem für die Hochschulwahlen an der TU Darmstadt in Betracht kommt. Dabei wurden einige grundsätzliche Einzelheiten offen gelassen, die nur im praktischen

Auszählung auf alle Wahlbereiche hochzurechnen und der Bedarf von zusätzlichen Scanstationen bzw. Scannern zu ermitteln.

Sollte durch die Tests festgestellt werden, dass die Scannerauswertung für die Hochschulwahlen an der TU Darmstadt nicht geeignet ist, bleibt die bisherige Urnen- und Briefwahl bestehen. Um die Erstellung der Wahldokumente dennoch zu vereinfachen wird die Entwicklung eines entsprechenden Makros in MS Office empfohlen. Dieses könnte so aussehen, dass alle Wahlbereiche und Wahlbewerber mit den benötigten Daten in eine Excel-Tabelle eingetragen werden und die Wahldokumente anhand der vorhandenen Vorlagen auf Knopfdruck erstellt werden. Dieses Makro könnte auch bei der Scannerauswertung mit EvaSys, das nur die Erstellung der Stimmzettel unterstützt, eingesetzt werden.
<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Befragung des Wahlamts ... VII</td>
</tr>
<tr>
<td>A.2 Befragung des Dezernats für Hochschulrecht .. XI</td>
</tr>
<tr>
<td>A.3 Befragung der HDA .. XIII</td>
</tr>
<tr>
<td>A.4 Befragung von Electric Paper .. XVIII</td>
</tr>
<tr>
<td>A.5 Befragung von Prof. Frens Peters, FH Hannover .. XX</td>
</tr>
<tr>
<td>A.6 Befragung der Friedrich-Schiller-Universität, Jena XXIII</td>
</tr>
<tr>
<td>A.7 Befragung von Micromata .. XXV</td>
</tr>
<tr>
<td>A.8 Befragung des HRZ .. XXIX</td>
</tr>
<tr>
<td>A.9 Muster-Stimmzettel für Hochschulwahlen an der TU Darmstadt XXXII</td>
</tr>
<tr>
<td>A.10 Anleitung zur Briefwahl .. XXXIII</td>
</tr>
</tbody>
</table>
A.1 Befragung des Wahlamts

Teil I: Fragen zum derzeitigen Wahlablauf

1. Wie läuft die Wahlvorbereitung ab?

2. Wie erfolgen Wahlbekanntmachung und Wahlbenachrichtigung?

 Die Wahlbekanntmachung wird auf der Homepage des Wahlamts veröffentlicht und Plakate werden erstellt und aufgehängt. Die Wahlbenachrichtigung der Bediensteten (Gruppen 1/3/4) erfolgt per Hauspost. Die Studierenden (Gruppe 2) erhalten ihre Wahlbenachrichtigung mit der Post zusammen mit den Studienbescheinigungen und dem Semesterticket. Zusätzlich werden sie per Email informiert.

3. Wird der Wahlablauf derzeit durch Software unterstützt?

 Es gibt ein Wählerverzeichnis in elektronischer Form, dass zur Registrierung der Wähler benutzt wird. Derzeit sind jedoch nur die Studierenden erfasst. Ansonsten wird keine spezielle Software zur Unterstützung der Wahlen eingesetzt.

4. Welche Wahlunterlagen werden erstellt und wie werden diese erstellt?

5. Unter welchen Voraussetzungen ist eine Briefwahl möglich und wie wird sie beantragt?

 Für die Briefwahl müssen keine Voraussetzungen erfüllt sein. Der Antrag, der auf der Homepage des Wahlamts verfügbar ist, wird ausgefüllt und an das Wahlamt geschickt. Dieses sendet den Briefwählern die Wahlunterlagen samt Anleitung zu.

6. Wie hoch ist die Zahl der Briefwähler?

 Die Zahl der Briefwähler schwankt stark zwischen 10 und 200.
7. Wie werden die Briefwahlstimmzettel ausgezählt?

Die Wahlbriefumschläge werden in Anwesenheit von zwei Mitgliedern des Wahlvorstands geöffnet. Liegt die korrekt ausgefüllte Erklärung zur Briefwahl vor, wird der Wahlumschlag in eine Wahlurne geworfen und der Wähler im Wählerverzeichnis abgehakt. Vor der öffentlichen Auszählung werden die Wahlumschläge der Briefwähler unter die Wahlumschläge aus der Urnenwahl gemischt.

8. Wie viele Wahlhelfer werden benötigt?

An den Wahltagen werden etwa 20 Wahlhelfer pro Tag benötigt, 10 für jedes der beiden Wahllokale. Für die Auszählung werden ungefähr 40 Wahlhelfer benötigt.

9. Wie werden die Wahlhelfer beschafft und wie schwer ist es Wahlhelfer zu finden?

10. Wie läuft die Wahlhandlung ab?

11. Wie werden die Wahlurnen über Nacht aufbewahrt?

Die Einwurfschlitzte werden versiegelt und die Wahlurnen eingeschlossen. Die Deckel bleiben bis zur Auszählung versiegelt.

12. Wie läuft die Stimmenauszählung ab und wie lange dauert sie?

13. Wie werden die Wahlergebnisse berechnet und erstellt?

Bei Personenwahlen werden die Kandidaten entsprechend der Reihenfolge der meisten Stimmen gewählt. Bei Listenwahlen wird die Sitzverteilung mit Excel berechnet. Die
Wahlergebnislisten werden, wie auch die Stimmzettel und Strichlisten, durch Anpassen der Vorlage erstellt.

14. Wie sicher ist die Urnen- und Briefwahl gegen Manipulationen am Ergebnis?

Die Stimmzettel werden von mindestens 2 Personen ausgezählt. Zudem werden die Auszähler so auf die Tische verteilt, dass keiner die Stimmzettel einer Gruppe oder eines Fachbereichs auszählt, denen er selbst angehört. So besteht kein Interesse an einer Manipulation. Außerdem kontrollieren sich die Wahlhelfer gegenseitig. Daher ist die Auszählung relativ sicher.

15. Wie hoch ist die Wahlbeteiligung bei den Hochschulwahlen?

Bis zur Einführung der 25-Prozent-Hürde lag die Wahlbeteiligung bei etwa 10 %. Seitdem lag sie bei 30-35 %. Die 25-Prozent-Hürde wurde wieder abgeschafft und galt bei der letzten Wahl 2010 schon nicht mehr. Es wurde ein Wahlbeteiligung von 23 % erreicht.

16. Wie hoch sind die Anzahl der Wahlberechtigten und die Wahlbeteiligung bei den Wahlen zum Personalrat, zur Jugend- und Auszubildendenvertretung und zur Schwerbehindertenvertretung?

Jugend- und Auszubildendenvertretung: (2010) 166 Wahlberechtigte. 34,3 % Wahlbeteiligung.
Schwerbehindertenvertretung: (2010) 205 Wahlberechtigte. 49,8 % Wahlbeteiligung.

Teil II: Fragen zu elektronischen Wahlen

17. Gab es schon mal Überlegungen Wahlen an der TU Darmstadt elektronisch durchzuführen?

Nein.

18. Was sind die typischen Probleme bei der Durchführung von Hochschulwahlen?

19. Welche Kosten fallen für die Durchführung der Hochschulwahlen in welcher Höhe an?

20. Welcher organisatorische Aufwand fällt bei der Durchführung der Hochschulwahlen an?

Organisatorischer Aufwand fällt wiederum insbesondere für die Erstellung der Wahlunterlagen, den Versand der Briefwahlunterlagen und die Auszählung an. Außerdem ist verursacht die Überprüfung der Wahlvorschläge auf Vollständigkeit und Zulässigkeit hohen Aufwand.
21. Wie ist die Einstellung zu Testwahlen oder echten Wahlen?

A.2 Befragung des Dezernats für Hochschulrecht

Mit der Befragung des Dezernats für Hochschulrecht soll untersucht werden, unter welchen rechtlichen Voraussetzungen elektronische Wahlen an der TU Darmstadt möglich sind.

1. Bei den Hochschulwahlen sind die Mitglieder der TU Darmstadt (Gruppen 1-4) wahlberechtigt. Sind daneben auch noch andere Beschäftigte der TU Darmstadt wahlberechtigt, z.B. Drittmittelbedienstete, der Hausmeister, das Kantinepersonal, das Reinigungspersonal, etc.?

2. Welche Kosten fallen für das Wahlamt der TU Darmstadt an?

3. Welchen Voraussetzungen müssen für die Einführung von elektronischen Wahlen an der TU Darmstadt erfüllt sein?

4. Bei den Hochschulwahlen kommen die Wahlordnung der TU Darmstadt auf Grundlage des Hessischen Hochschulgesetzes i.V.m. der Grundordnung der TU Darmstadt und die Satzung der Studierendenschaft zur Anwendung. Was regeln die Gesetze und wie hängen sie zusammen?

5. Elektronische Wahlen sind in Form von Internetwahlen, dem Einsatz von Wahlgeräten oder dem Scannen von handschriftlich ausgefüllten Stimmzetteln möglich. Welche Satzungsänderungen müssen jeweils vorgenommen werden?

6. Wie wird die Wahlordnung der TU Darmstadt geändert?

Die Wahlordnung wird von der Universitätsversammlung mit einfacher Mehrheit geändert.
A.3 Befragung der HDA

Teil I: Fragen zur Organisation und Nutzung von EvaSys an der TU Darmstadt

1. Aus welchen Softwareanwendungen setzt sich das EvaSys-System an der TU Darmstadt zusammen?
 Das System besteht aus EvaSys Education und daneben noch aus den Programmen Teleform Designer, Teleform Reader, Teleform Verifier, VividForms Reader und ScanStation. All diese Programme bilden zusammen das Software-System, das hinter der Evaluation steht. Im allgemeinen Sprachgebrauch meint man häufig dieses gesamte System, wenn man einfach „EvaSys“ sagt.

2. Welche Kosten fallen für die Durchführung einer Umfrage an?

3. Wer an der TU Darmstadt kann EvaSys mitbenutzen?
 EvaSys an sich wird über ein Web-Interface angesteuert. Also kann man es von jedem Rechner mit Internetanschluss bedienen, insofern man ein EvaSys-Nutzerkonto hat.
 Das elc ist z.B. ein Mitbenutzer, ebenso wie der FB 20 und teilweise der FB 18 - jeweils die Fachschaften, die für die LV-Evaluation zuständig sind. Diese Mitbenutzer haben einen eingeschränkten Zugriff auf EvaSys, jedoch einen Voll-Zugriff auf ihr eigenes „Unterverzeichnis“ - sehen also nur die Daten, die auch für ihren Bereich relevant sind, können damit aber auch frei arbeiten.

4. Was wird außer dem EvaSys-Nutzerkonto und einem Rechner mit Internetzugang noch für die selbständige Durchführung von Umfragen benötigt?
 Es wird noch ein Scanner und eine sogenannte Scan-Lizenz benötigt. Jedoch ist an der TU Darmstadt keine Scan-Lizenz mehr übrig. Der Rechner zum Scannen benötigt einen Internetanschluss und die Scan-Software inklusive einiger Verknüpfungen auf den EvaSys-Server, die einmalig eingerichtet werden. Viel einfacher wäre es aber, die Fragebögen zu einem bereits eingerichteten Scanner zu bringen und sie dort einscannen zu lassen.

5. Wer richtet das EvaSys-Nutzerkonto und welche Kosten entstehen für den Zugriff auf EvaSys und eine weitere Scan-Lizenz?
 Die Einrichtung eines EvaSys-Nutzerkontos erfolgt durch die HDA. Die jährlichen Kosten für die Nutzung von EvaSys betrugen grob geschätzt etwa 1.000 €. Die Scan-Lizenz wird einmalig beim EvaSys-Entwickler Electric Paper erworben. Jedoch steigt mit jeder neu erworbenen Scan-Lizenz die jährliche Summe für den von uns abgeschlossenen Support-

6. Wie viele Scan-Lizenzen hat die TU Darmstadt und welche Einrichtungen nutzen diese?

7. Können an einen Rechner mit Scan-Lizenz mehrere Scanner zur parallelen Auswertung angeschlossen werden?

Nein, man bezahlt pro Scanner. Also für jeden Scanner wird eine Lizenz benötigt.

8. Welchen Scanner setzt die HDA ein?

Wir benutzen zurzeit den Canon DR-6010C.

9. Kann der Scanner dem Wahlamt für die öffentliche Auszählung der Hochschulwahlen 1-2 Tage im Jahr zur Verfügung gestellt werden?

Rein technisch gesehen wäre das möglich. Der eingerichtete Rechner müsste samt Scanner zur Auszählung gebracht werden und einen Internetzugang haben. Da unser Scanner aber bis auf wenige Wochen im Jahr immer benutzt wird, dürfte es schwierig sein, sich immer wieder auf Nutzungszeiträume zu einigen.

10. Gibt es bei der HDA Bedarf an einem zweiten Scanner?

Schwierig zu sagen. Im Moment kommen wir ganz gut mit einem zurecht, aber bei steigenden Anforderungen könnte ein weiterer Scanner erforderlich werden. Wir haben auch hin und wieder mal überlegt, ob man eine zweite, dezentrale ScanStation einrichten soll, die zwar von der HDA betreut, jedoch von den Fachbereichen genutzt wird, z.B. an der Lichtwiese.

Teil II: Fragen zur Durchführung von Umfragen mit EvaSys

11. Wie werden die Fragebögen erstellt?

Die meisten Papierfragebögen werden mit Teleform Designer hergestellt, die meisten Online-Befragungen mit VividForms Editor.

Der VividForms Editor ist ein Teil von EvaSys, wird also automatisch mitgeliefert und erlaubt eine relativ schnelle Erstellung eines Fragebogens über ein Internet-Interface. Da es aber ganz allgemein wenig Möglichkeiten hinsichtlich des Layouts und des Designs bietet, nutzt man es fast nie für Papierfragebögen. Da aber bei Online-Befragungen das Layout der Befragung ohnehin schon vorgegeben ist, nutzt man den VividForms Editor aufgrund der Einfachheit der Bedienung hierfür lieber.

Teleform Designer ist wesentlich schwerer zu bedienen und die Herstellung von Fragebögen (auch hinsichtlich, dass sie später korrekt ausgewertet werden können) ist wesentlich zeitaufwendiger. Dafür hat man alle Möglichkeiten, was Layout und/oder Design angeht. Dies ist insbesondere dann wichtig, wenn man eine bestimmte Vorgabe bekommt, z.B. dass ein Fragebogen nur eine bestimmte Anzahl von Seiten haben darf oder ähnliches.

an Kandidaten zu erstellen, mit der die Wahlamtmitarbeiter die Stimmzettel durch Anpassen der Überschrift und der Namen der Kandidaten und durch Löschen der nicht benötigten Felder erstellen können?

13. Ist die Erstellung der Stimmzettel mit VividForms durch das Wahlamt ein realistisches Szenario?

Bögen in VividForms könnte theoretisch jeder erstellen. VividForms kann per Internet aufgerufen werden (ein Teil von EvaSys) und ist sehr einfach zu bedienen, sieht dann aber nicht so hübsch aus, da man wenig design-technische Möglichkeiten hat.

14. Welche design-technischen Möglichkeiten bietet VividForms?

Man kann zwar Schriftgrad/-größe und einige Kleinigkeiten ändern und es gibt unterschiedliche Formen zum Ankreuzen, z.B. Rechteck, Kreis, etc. Die Abstände zwischen den Kästchen kann man seinen Wünschen anpassen. Es gibt weiterhin die Möglichkeit, die Kästchen vertikal oder horizontal anzuordnen, aber im Grunde übernimmt das Programm selbst das Layout.

15. Können mit VividForms Fragebögen im DIN-A5-Format erstellt werden?

Ich weiß nicht, wie es mittlerweile ist, aber vor etwa 2 Jahren hat EvaSys nur DIN A4 verstanden. Ich glaube nicht, dass sich daran was geändert hat.

16. Wie komplex ist die vollständige Durchführung einer Umfrage mit VividForms? Welche Schritte sind notwendig und können diese selbständig vom Wahlamt durchgeführt werden?

a. Konzeption eines Fragebogens – ist bei Wahlen nicht so wichtig.

b. Erstellung des Fragebogens

Mit VividForms einfach, sollte jeder beherrschen, der schon mal online ein Formular ausgefüllt hat. Ich habe mal eine zehnseitige Anleitung geschrieben, die hat bisher noch jedem gereicht, also es ist nicht hochkomplex.

c. Einpflegen des Fragebogens in EvaSys

Erübrigt sich, da VividForms sowieso ein Teil in EvaSys ist und die Integration automatisch verläuft.
d. **Anlegen der Umfrage**

Damit das Wahlamt die Umfragen selbst anlegen kann, muss die HDA für das Wahlamt ein EvaSys-Nutzerkonto anlegen. Mit diesem Konto hätte das Wahlamt dann seinen eigenen Bereich in EvaSys, in dem es schalten und walten kann, wie es will. Der Zugriff auf EvaSys ist dann natürlich auf diesen Bereich beschränkt, aber innerhalb dieses Bereiches kann ganz normal mit EvaSys gearbeitet werden, d.h. vom Erstellen der Fragebögen bis hin zum Einscannen und Abrufen der Umfragen.

e. **Deckblätter ausdrucken – sollte kein Problem sein.**

f. **Einscannen**

Ist die Scanstation korrekt eingerichtet und die Fragebögen qualitativ gut vervielfältigt, muss nur das richtige Deckblatt auf die dafür passende Umfrage gelegt werden. Natürlich kann es beim Scannen immer mal zu (technischen) Problemen kommen, die meisten sind aber irgendwo beim Faktor Mensch zu suchen (falsches Deckblatt zum Scannen benutzt, etc). Auch die Qualität der Vervielfältigung der Fragebögen kann da durchaus eine Rolle spielen: Zu hell kopierte Fragebögen können genauso ein Problem sein wie schiefl kopierte Bögen (so dass die Scan-Markierungen nicht mehr da sind) oder fehlerhafte Kopien.

g. **Auswertung**

Die Auswertungen lassen sich in EvaSys abrufen.

Beim Arbeiten mit VivdiForms und einem eigenen Nutzerkonto können alle Schritte autonom vom Wahlamt durchgeführt werden. Die Durchführung einer Umfrage ist nicht besonders komplex.

Teil III: Fragen zur Eignung von EvaSys für die Hochschulwahlen an der TU Darmstadt

17. Können mit VividForms Stimmzettel erstellt werden, bei denen die Kandidaten untereinander stehen und jeweils ein Kästchen zum Ankreuzen haben?

 Ja.

18. Gibt es eine Funktion zum Zählen, wie oft die einzelnen Kandidaten angekreuzt wurden?

 Ja.

19. Können Stimmzettel mit zu vielen oder gar keinen Kreuzen erkannt und ungültig gewertet werden?

20. Wenn der Stimmzettel mit unerlaubten Markierungen, Kommentaren, o.ä. versehen wird, ist er ebenfalls ungültig. Kann so etwas erkannt werden?

 Nein.

21. Kann die Auswertung der Stimmzettel durch EvaSys auch als offizielle Ergebnisliste verwendet werden? Hierzu muss diese die Anzahl der Wahlberechtigten, die Anzahl der Wähler laut Wählerverzeichnis, die Anzahl der gültigen und ungültigen Stimmzettel und die Wahlbeteiligung enthalten. Ist es möglich die erforderlichen Angaben manuell in die Auswertung einzufügen?

 EvaSys zählt, wie viele Bögen überhaupt eingescannt wurden, also N. Bei den einzelnen Fragen erscheint dann die Anzahl, wie oft diese Frage -sagen wir mal- korrekt ausgelesen
wurde, also n. Erfahrungsgemäß unterscheiden sich N und n bei jeder Frage. Gesetz dem Fall, es wurden insgesamt N=1000 Bögen eingescannt, aber es gab 106 Fragebögen, auf dem die Antwort nicht korrekt ausgelesen werden konnte. Ergo würde hinter dieser Frage n = 894 stehen. Daraus könnte man errecknen, dass es 106 Bögen gab, die leer oder falsch angekreuzt wurden. Die Anzahl der Wahlberechtigten und die Wahlbeteiligung können aber nicht von außen in EvaSys eingefügt werden.

22. Wie hoch ist die Fehlerquote bei der automatischen Auswertung?

Wird der Fragebogen korrekt ausgefüllt, d.h. Mit einem schwarzen Stift in das Kästchen ein Kreuz gesetzt, liegt die Fehlerquote bei 0%.

Gerade nach dem in diesem Sommersemester durchgeführten Umzug des kompletten Systems auf neue Hardware und eine neue EvaSys-Version habe ich über 50 verschiedene Umfragen mit verschiedenen Fragebogen hinsichtlich der korrekten Auswertung überprüft. Dabei habe ich an die 2000 einzelnen Fragen verglichen, also was wurde tatsächlich auf einem Bogen angekreuzt und was hat EvaSys letzt endlich ausgewertet.

In der Regel verhält sich das System vorsichtig: kann es etwas nicht korrekt erkennen, wertet es die entsprechende Frage nicht aus. Die Frage gilt dann als unbeantwortet. Das war der „Hauptfehler“. Innerhalb der ca. 2.000 Fragen kam es bei ca. 15 Fragen zu einer inkorrekteten Auswertung hinsichtlich des Erkennens des Kreuzchens, was aber an dem Layout des Fragebogens lag. Da es sich hierbei um ein „älteres“ Modell handelte, kann man diese Fehlerquelle leicht durch ein geändertes Design der Bögen ausschalten.

Obwohl wir EvaSys mehrfach hinsichtlich seiner Korrektheit in den Auswertungen geprüft haben, haben wir uns dennoch dagegen ausgesprochen, es als Auswertungsgerät für Klausuren und/oder Prüfungen zu nutzen. Der Faktor „Mensch“ ist hier im Allgemeinen ein zu großes Risiko (Bögen werden mit zu hellen Stiften ausgefüllt, die Kreuzchen werden neben anstatt in das Kästchen gesetzt, es werden mehr als ein Kästchen angekreuzt und so weiter).

Es gibt zwar eine gewisse Toleranz, innerhalb derer auch EvaSys trotzdem noch korrekt auswertet, aber auch diese Toleranz hat Grenzen.

Es wäre vermessene zu sagen, EvaSys wäre mit einem menschlichen Auge gleichzusetzen. Trotzdem ist die Fehlerquote sehr gering. Je besser das sogenannte Beleggut ist (also die Qualität der ausgefüllten Fragebögen), desto korrekter arbeitet EvaSys. Im besten Fall also mit einer Fehlerquote von 0%.

23. Können die Fragebögen, die von EvaSys nicht eindeutig ausgewertet werden können, nach oder sogar während der Auswertung angezeigt werden?

Ja, die Möglichkeit gibt es.

24. Bei den Hochschulwahlen werden zur Unterscheidung der Gremien farbige Stimmzettel verwendet (hellgelb, orange, dunkelrot, violett). Wird dadurch die korrekte Auswertung beeinträchtigt? Werden weiße Stimmzettel empfohlen?

A.4 Befragung von Electric Paper

Im Rahmen der Befragung von Electric Paper soll untersucht werden, ob es technisch möglich ist, die Auszählung der Hochschulwahlen an der TU Darmstadt mit EvaSys und VividForms durchzuführen. Zudem sollen die dort anfallenden Kosten ermittelt werden.

1. An der TU Darmstadt wird EvaSys bereits zur Durchführung von Lehrevaluationen eingesetzt. Welche Kosten fallen für EvaSys an, wenn dort auch das Wahlamt mit EvaSys ausgestattet werden soll?

 Da die TU Darmstadt Inhaber einer EvaSys Campus Lizenz ist, entstehen hier keine weiteren Kosten.

2. Welche Kosten entstehen für die Einrichtung einer weiteren Scan-Station?

 (Stand: 01.10.2010)

 Mit VividForms können die Stimmzettel erstellt werden, jedoch nicht im DIN-A5-Format. Sonderformatige Formulare können mit TeleForm erstellt werden.

4. Können nicht angekreuzte Stimmzettel und Stimmzettel mit zu vielen Kreuzen erkannt und ungültig gewertet werden?

 Ja, dies ist mit der Plausibilitätsprüfung möglich.

5. Wie werden Stimmzettel behandelt, die nicht eindeutig ausgewertet werden können?

 Diese können nochmals zur Sichtprüfung bzw. Korrektur angezeigt werden.

6. Wie hoch ist die Fehlerrate bei der Auswertung und von welchen Faktoren hängt sie ab?

 Die Fehlerrate hängt von der Qualität der Belege, der Handschrift, des Scanners und des Scans und der Intensität der hinterlegten Plausibilitäten ab. Grundsätzlich ist aber die Erkennung von Ankreuzfeldern bei guten Bedingungen sehr gut.

7. Können auch farbige Stimmzettel ausgewertet werden oder werden weiße Stimmzettel empfohlen?

8. Werden (doppelt) gefaltete Stimmzettel korrekt ausgewertet?

 Technisch stellt das bei „normalen“ Bedingungen kein Problem dar.

9. Wie lange dauert ungefähr die automatische Auswertung von 25.000 Stimmzetteln?

Meines Erachtens nur im Prozess der Verteilung und dem Rücklauf der Stimmzettel. Der Prozess der Erfassung per Software kann entsprechend qualitätsgesichert und vorab getestet werden.
A.5 Befragung von Prof. Frens Peters, FH Hannover

Zahlreiche Hochschulen nutzen UniWahl4 bereits:

Eine Demoversion der Software ist verfügbar unter:
http://www.uniwahl-soft.de/Download/download.html

Teil I: Fragen zur Wahldurchführung mit UniWahl4 und VividForms

1. Welche Restriktionen enthält die Demo-Version von UniWahl4?
 Eine Speicherung der Daten ist nicht möglich. Zum Testen können Sie eine befristete Vollversion erhalten.

2. EvaSys wird an der TU Darmstadt zentral von der HDA betrieben. Wie verläuft die Koordination bei der Erstellung und Auswertung der Stimmzettel zwischen dem Wahlamt und der HDA?

3. Wie ändern sich dadurch die Preise für UniWahl4 inklusive den VividForms-Modulen?
 Die Preise für UniWahl4 sind nach der Anzahl der Studierenden gestaffelt. Im Fall der TU Darmstadt ergeben sich folgende Kosten:
 UniWahl4: 2.400 €
 VividForms: ca. 1.600 €
 Summe: ca. 4.000 €

4. Wird mit UniWahl4 für pro Scanner eine Scan-Lizenz benötigt?
 Nein, Sie können UniWahl4 und VividForms auf beliebig vielen Rechnern betreiben.
5. Wie aufwendig ist die Einarbeitung, um Hochschulwahlen mit UniWahl4 und EvaSys durchzuführen?
 Gering.

6. Wie aufwendig ist das Modifizieren der Stimmzettel für die automatische Auswertung?
 Der berühmte eine Tastendruck, wenn keine Formatierungsprobleme (z.B. sehr viele Kandidaten) eine Nachbearbeitung erfordern.

7. Wie werden Stimmzettel behandelt, die vom Scanner nicht eindeutig ausgewertet werden können?
 Undeutliche Ankreuzungen werden gemeldet, ggf. ist eine manuelle Nacharbeitung nötig. Die beim Scanen erzeugten Dateien werden archiviert und sind einfach zugänglich.

8. Wie hoch ist erfahrungsgemäß der Anteil der nicht eindeutig auswertbaren Stimmzettel?
 Gering, fragen Sie die EvaSys-Anwender in Ihrem Hause oder UniWahl4-Nutzer.

9. Wie hoch ist die Fehlerrate bei der automatischen Auswertung?

10. Können farbige Stimmzettel zur Unterscheidung der Gremien eingesetzt werden oder wirkt sich das negativ für eine korrekte Auswertung aus?
 Pastellfarbene Stimmzettel werden problemlos ausgewertet, bei kräftigen Farben muss der Schwellwert angepasst werden (nicht zu empfehlen).

11. An der TU Darmstadt sind insgesamt bis zu 25.000 Stimmzettel auszuwerten. Außerdem sieht die Wahlordnung vor, dass zwecks Bestätigung, alle Stimmzettel zweimal gezählt werden, so dass eventuell 50.000 Stimmzettel an einem Tag ausgewertet müssen. Wie sieht hierfür die optimale Arbeitsumgebung aus und wie lange dauert die Auswertung?
 Die Anforderungen an die Rechnerumgebung sind gering, jeder heute übliche Rechner oder Notebook kann das. Alle für EvaSys in Ihrem Hause eingesetzten Scanner sind geeignet. Wenn Sie einen Scanner einsetzen, der 100 Seiten/ Minute schafft, benötigen Sie für 25.000 Stück 250 Minuten Scanzeit + Stapelwechselzeiten.

12. Bei der Durchführung von Wahlen spielt die Sicherheit vor Manipulationen an einzelnen Stimmzetteln und dem Gesamtergebnis eine wesentliche Rolle. Welche Bedrohungen gehen von Hackerangriffen aus?
 Keine, denn Sie können offline arbeiten. Eine Vernetzung ist nicht nötig, und wenn Sie vernetzt arbeiten, haben Ihre Systeme sicher entsprechende Firewalls etc.
Teil II: Fragen zu elektronischen Wahlen an der FH Hannover

Es gab keine Gegner, die Studierenden waren wie immer nicht übermäßig an den Wahlen interessiert. Da half auch ein großer Werbeaufwand nichts, eine Probeabstimmung über das Mensaessen, Mails an alle Wahlberechtigten und eine Tombola.

14. Wieso wurden danach keine Internetwahlen mehr angeboten?

Weil der organisatorische Aufwand sehr groß war und die Wahlbeteiligung sich nicht signifikant steigerte. Das Projekt war als Studentenprojekt zur Untersuchung der Möglichkeit von Online-Wahlen angelegt. Eine Firma bietet jetzt die Online-Durchführung der Hochschulwahlen für 0,70€/Wahlberechtigten an. Durch das BVG-Urteil von 2009 wurden vielerorts entsprechende Planungen zurückgestellt.

15. Seit wann wird die Auszählung mit Scannern durchgeführt?

Seit ca. 2006 oder 07, einmal überschlagen, da die Druckerei unbrauchbare Stimmzettel geliefert hatte. Zweimal wurde die Auszählung zur Kontrolle manuell und maschinell parallel durchgeführt, d.h. jeder ausgezählte Stapel wurde direkt eingescannt. Da die Ergebnisse nach dem Einscannen sofort vorlagen und mehrere Fehler des manuellen Zählens festgestellt wurden, weigerten sich die Wahlhelfer weiter zu zählen – und der kritische Wahlleiter war auch überzeugt.

16. Vermutlich besteht das elektronische Wahlsystem aus UniWahl4, EvaSys und einer Scan-Station. Richtig?

Im Prinzip ja, die VividForms-Module sind jetzt unabhängig von EvaSys.

17. Wie viele und welche Scanner werden eingesetzt?

1 x Canon DR 3060.

18. Wo wird die Auszählung durchgeführt? Ist sie öffentlich?

Im Büro des Wahlsachbearbeiters. Die Öffentlichkeit ist zugelassen.

19. Wie viele Stimmzettel werden ausgewertet und wie lange dauert die Auswertung?

Bei den letzten (kleinen) Wahlen wurden ca. 1.500 Stimmzettel per Scanner gezählt, der Zeitbedarf hierfür lag, wenn ich mich recht erinnere, bei etwa 3 Stunden. Das Ergebnis wird noch an demselben Tag ins Netz gestellt.

20. Wie viele Wahlhelfer werden für die Auszählung benötigt?

Keine, nur zum Sortieren der Stimmzettel.

21. Wie sind die Erfahrungen mit Scannerauswertung?

Gut.
A.6 Befragung der Friedrich-Schiller-Universität, Jena

Im Frühjahr 2010 wurde an der Friedrich-Schiller-Universität Jena der Rat der Graduierten-Akademie mit dem Internetwahlsystem Polyas gewählt. Durch die Befragung sollen das eingesetzte Wahlsystem und der Wahlablauf beschrieben werden. Weiterhin sollen die Erkenntnisse aus der Internetwahl ausgewertet werden und ein Ausblick für die Zukunft gegeben werden.

1. Was ist die Graduierten-Akademie?

Die Graduierten-Akademie hat zum Ziel, den Doktoranden der Friedrich-Schiller-Universität (FSU) optimale Bedingungen für eine erfolgreiche Promotion auf höchstem internationalem Niveau zu gewährleisten. Darüber hinaus gilt ihre Aufmerksamkeit der umfassenden Förderung junger Wissenschaftlerinnen und Wissenschaftler, um sie damit auf anspruchsvolle Aufgaben in Wissenschaft, Wirtschaft und Gesellschaft vorzubereiten.

Siehe http://www.jga.uni-jena.de.

2. Wer ist wahlberechtigt und wie viele Wahlberechtigte gibt es?

Wahlberechtigt sind Doktoranden und Post-Doktoranden. Bei der Wahl 2010 gab es 451 Wahlberechtigte aus drei Wahlbereichen.

3. Wie wurden die Wahlen zum Rat der Graduierten-Akademie vor 2010 durchgeführt?

Zuvor gab es eine generelle Briefwahl.

4. Aus welchen Gründen wurde die Internetwahl beschlossen?

Zum einen sollten die hohen Kosten der Briefwahl gesenkt werden und zum anderen war die Internetwahl ein Test des Wahlsystems für die zukünftigen Gremienwahlen.

5. Welche Arten von Kosten sind in welcher Höhe für das Internetwahlsystem Polyas angefallen?

Keine, da für die Wahl eine Kooperationsvereinbarung mit Micromata geschlossen wurde und diese den Test als Pilotprojekt angelegt hat.

6. Gab es vorher schon ein elektronisches Wählerverzeichnis?

Ja, in Form einer Excel-Tabelle.

7. Welches Verfahren zur Authentifizierung der Wähler wurde verwendet?

Es wurde das PIN/TAN-Verfahren angewendet.

8. Wie wurde die Wahl vorbereitet?

Micromata wurden die Informationen über die Anzahl der Wahlberechtigten in den jeweiligen Wahlbereichen mitgeteilt. Micromata hat dann die PINs und TANs erstellt und das Wahlamt hat sie zugeordnet. Die PINs wurden den Wählern im Wahlschreiben per E-Mail mitgeteilt und die TANs per Post versendet. Anhand einer Excel-Liste der Wahlbewerber hat Micromata die elektronischen Stimmzettel eingespielt und das Wahlamt hat diese kontrolliert.

9. Welche Informationen haben die Wähler zur Internetwahl erhalten?

Im Wahlschreiben war eine Anleitung zur Stimmabgabe enthalten. Außerdem war eine Anleitung und weitere Informationen zum Verfahren und zur Sicherheit im Internet verfügbar.
10. Wie wurde die Wahl gesteuert?

 Der Wahlvorstand hat die Wahl nach dem Vier-Augen-Prinzip gesteuert. Zum Starten und
Beenden der Wahl waren die unabhängigen Eingaben von vier Mitgliedern des Wahlvorstands
notwendig. Sowohl Wahlurne als auch Wählerverzeichnis mussten je mit einem Schlüssel und
einem Kennwort freigeschaltet werden, wozu insgesamt vier Personen notwendig waren.

11. War eine Wahlbeobachtung möglich? In welcher Form?

 Ja, Wahlvorstand und Wahlamt konnten sich die Wahlbeteiligung ansehen.

12. Wie und von wem wurde die Wahl die Auszählung durchgeführt?

 Der Wahlvorstand hat die Auszählung nach dem Vier-Augen-Prinzip gestartet. Nach Ca. 5
Minuten lagen die Wahlergebnisse vor.

13. Wie wurde die Wahl nachbereitet?

 Der Wahlvorstand hat das Wahlprotokoll unterschrieben.

14. In welcher Form wurden die elektronischen Stimmen archiviert?

 Die elektronischen Stimmenzettel werden auf einem Server von Micromata archiviert. Eine
Sicherheitskopie liegt beim Wahlamt auf CD und dem Server der FSU Jena vor.

15. Welche Auswirkungen hatte die Internetwahl auf die Wahlbeteiligung?

 Die Wahlbeteiligung ist zurückgegangen. Dies hatte aber andere (strukturelle) Ursachen.

16. Welche Erkenntnisse hat die Internetwahl hervorgebracht?

 Die Internetwahl verlief ohne größere Probleme und wurde von den Wählern ganz normal
angenommen. Für die Wahl sind zwar wegen der Kooperationsvereinbarung keine direkten
Kosten entstanden, grundsätzlich kann aber kurzfristig keine Kostensenkung erreicht werden.

17. Wie sind die Pläne für die Zukunft?

 In Zukunft sollen die gesamten Hochschulwahlen mit Polyas über das Internet gewählt
werden.
A.7 Befragung von Micromata

Die Befragung von Micromata soll zeigen, wie das Internetwahl-System Polyas an der TU Darmstadt zur Durchführung der Hochschulwahlen eingesetzt werden kann. Dazu werden die Kosten, die Funktionalitäten und die technische Absicherung von Polyas ermittelt und die organisatorische Durchführung einer Wahl beschrieben.

1. Wie viel kostet die Durchführung von Hochschulwahlen mit Polyas University?
 Die Kosten liegen bei 68 Cent pro Wahlberechtigter inkl. der Mehrwertsteuer für die gesamte Durchführung der Hochschulwahlen mit allen Gremien und Wählergruppen. Im Preis sind nicht enthalten die Herstellung und der Versand von Wahlschreiben, da davon ausgegangen wird, dass diese in der eigenen Hausdruckerei hergestellt werden.

2. Inwiefern ist im Zuge der Bereitstellung des Wählerverzeichnisses die Weitergabe personenbezogener Daten mit den Datenschutzgesetzen vereinbar?
 Generell benötigt Polyas nur ein eindeutiges anonymisiertes Identifikationsmerkmal der Wähler. Dies können Matrikelnummer, Personalausweisnummer, Personalnummer oder ein nur für die Wahl generierter Personenschlüssel sein. Personenbezogene Daten wie Name, Anschrift oder Geburtsdatum sind nicht nötig für den Wahlvorgang jedoch für den postalischen Versand der Wahlunterlagen sofern die Wähler persönlich angeschrieben werden.
 Es besteht auch die Möglichkeit Zugangsdaten zu generieren die vom Wahlbüro an die Wähler verteilt werden (DFG).
 Eine weitere Möglichkeit ist, dass das Wählerverzeichnis direkt von der Universität betrieben wird. In der Konsequenz heißt dies, dass nicht einmal Matrikelnummern, die beispielsweise als PIN eingesetzt werden an Dritte weitergegeben werden. Insgesamt bedeutet dies, dass eine Wahl unter Einhaltung sämtlicher datenschutzrechtlichen Vorgaben durchgeführt werden kann.

3. Die TU Darmstadt führt bei der Urnen- und Briefwahl ein elektronisches Wählerverzeichnis. Kann dieses für die Internetwahl von Polyas benutzt werden?
 Dies liegt in der Entscheidung des Auftraggebers. Es ist empfehlenswert, dass das Wählerverzeichnis vom Auftraggeber und Urne und Validator von Micromata betrieben werden und überdies aus datenschutzrechtlichen Aspekten das Wählerverzeichnis nur aus PIN (z.B. Matrikelnummer) und TAN besteht und darüber hinaus über keine personenbezogenen Daten verfügt.

4. Wie wird das elektronische Wählerverzeichnis der Hochschule an Polyas angebunden?
 Es kommt darauf an, wie das Wählerverzeichnis eingebunden werden soll. Im einfachsten Fall wird lediglich die Matrikelnummer als PIN aus der Datenbank extrahiert, eine entsprechende Schnittstelle automatisiert und dazu dann mit einem Generierungstool die TANs generiert. Dies ließe sich beliebig erweitern, bis hin zur vollständigen Generierung personalisierter Wahlschreiben. Aber auch dieser Prozess würde und sollte aus datenschutzrechtlichen Aspekten vollständig durch die Uni übernommen werden.

5. Wie kommen die TANs in das Wählerverzeichnis?
 Dafür gibt es das Generierungstool, das das Wählerverzeichnis mit entsprechenden Verschlüsselungen generiert und aus PIN (hier Matrikelnummer) und TAN besteht und im weiteren Prozess noch validiert wird.

6. Wie und von wem werden die PINs und TANs erstellt?
 Die TANs werden zur PIN generiert, damit die Uni dann die Wahlschreiben produzieren kann. In der Regel wird dieser Prozess vollständig mit einem Generierungstool von Polyas von der

7. Sind neben PIN-TAN-Verfahren auch andere Authentifizierungsverfahren möglich?
 Ja, Chipkarte.

8. Werden von Polyas Kartenlesegeräte bereitgestellt?

9. Wie wird die Erstellung der Stimmzettel organisiert und wie verläuft die Abstimmung mit der Hochschule?

10. Gibt es vor der Wahl einen Testlauf?
 Ja, ein Testlauf ist möglich. Dieser dient auch zur Überprüfung und Freigabe der Stimmzettel, wobei ein Testwählerverzeichnis verwendet wird. Diese Testwahl wird vollständig durch das Wahlamt über den Wahlvorstandsclient freigeschaltet und beendet.

11. Wie wird die Wahl gestartet, geschlossen und die Auszählung angestoßen? Wer macht das?
 Der Wahlvorstand des Auftraggebers mindestens nach dem Vier-Augen-Prinzip mit selbst vergebenen Signatur- und Kommunikationsschlüsseln für alle Komponenten (Validator, Urne, Wählerverzeichnis) mit dem Wahlvorstandsclient.

12. Werden bei Hochschulwahlen mit Polyas alle notwendigen Stimmzettel abhängig von Statusgruppen und Fachbereich im gleichen Wahlgang ausgefüllt? D.h. nur einmal am Wahlsystem anmelden, alle Stimmzettel ausfüllen, Stimme absenden?
 Ja.

13. Kann man vor einer ungültigen Stimmabgabe (z.B. zu viele Kreuze) gewarnt werden?
 Das ist die Entscheidung des Auftraggebers. In der Regel kann man zu viele Kreuze machen, da davon ausgegangen werden muss, dass es expliziter Wählerwille ist. Bei Stimmbetätigung kommt dann aber noch einmal der Hinweis zu dem Stimmzettel, dass zu viele Kreuze gemacht wurden und der Stimmzettel als ungültig gewertet wird.

14. Ist vote updating möglich?
 Nach der verbindlichen Stimmabgabe kann der Stimmzettel nicht mehr geändert werden.
15. Können bei Verlust der Wahldaten neue generiert werden?

Die Wahl ist vom Wahlveranstalter abhängig. Generell handelt es sich dabei um ein organisatorisches Problem, weniger um ein technisches und ist stark von der Wahlordnung abhängig.

16. Gibt es eine Unterstützung für Blinde?

17. Wie lange dauert ungefähr die Auswertung von 10.000 Stimmzetteln?

Nicht allzu lange. Kommt auf die Maschine an, allerdings ist bei der Anzahl der Stimmen auf genügend RAM zu achten, min 4GByte.

18. Wie werden die Wahlergebnisse bekanntgegeben?

Dies ist eine Entscheidung des Wahlveranstalters, wie, wo und wann er Ergebnisse veröffentlicht.

19. Gibt es die Wahlergebnisse auch in PDF?

Ja.

20. Woraus besteht die Wahlniederschrift? In welcher Form können die elektronischen Stimmen (vom Wahlamt der TU Darmstadt) archiviert werden?

Sie besteht u.a. aus dem Wählerverzeichnis, der Urne mit den Stimmzetteln und den Prüfsummen über die Stimmzettelblöcke und der xml-Datei (dient auch der Archivierung).

21. Wer archiviert Wahlniederschrift?

I.d.R der Wahlvorstand am besten dort wo die Papierwahl archiviert wurde (Raum, Regal, Ablage, etc...), nur dass eine CD reicht. Meist wird ein Aktenordner mit den Ausdrucken und der besagten CD im Regal abgestellt.

22. Was enthält die xml-Datei?

23. Wie wird sichergestellt, dass die Stimmabgaben dauerhaft geheim bleiben?

24. Wie wird bei einem Systemausfall die Verfügbarkeit aufrecht erhalten und Datenverlust vorgebeugt?

25. Wie schützt man sich vor Hacker-Angriffen?

Serverseitig werden Vorkehrungen getroffen die Angriffe auf die Wahlserver erkennen und entsprechende Maßnahmen ergreifen. So wird bei einer Denial of Service Attacke der Wahlserver von Netz genommen, bzw. die Firewall macht für die Dauer der Attacke dicht. Angriffe auf den Wähler kann das Wahlsystem nur sehr begrenzt erkennen. Eine Man in the Middle Attacke kann der Wähler erkennen indem er die Zertifikats-Fingerprints vergleicht. Es werden bei jeder Wahl die Fingerprints der Zertifikate veröffentlicht, so dass ein Abgleich für jeden Wähler möglich ist (bei Bedarf kann auch ein Client-Zertifikat verwendet werden, das eine man in the middle Attacke erschwert).

Einen guten Schutz vor Angriffen auf eine Internetwahl kann nur die Kombination aus Client- und serverseitigen Schutzmaßnahmen herstellen.

26. Ist das Ziel eines DoS-Angriffs nicht erfolgreich, wenn der Wahlserver vom Netz genommen wird?

Kommt auf das Ziel der Attacke an, wenn nur die Erreichbarkeit gestört werden soll, dann ja. Sobald die (D)DoS Attacke beendet ist, kann das Wahlsystem weiter arbeiten, da durch das Blockieren der Firewall der Tomcat Server nicht überlastet wurde. Sollte die Attacke die gesamte Wahlperiode anhalten muss der Wahlvorstand eine Entscheidung treffen wie weiter verfahren wird.

27. Ist die Wahlsoftware zertifiziert?

28. Wird der Evaluationsbericht veröffentlicht?

Diese Frage kann zurzeit nicht beantwortet werden.

29. Welches Vertrauens- und Angreifermodell wird bei der Zertifizierung zugrunde gelegt?

- Unbefugte Wähler
- Stimmenkauf
- Manipulation von Daten auf dem Übertragungsweg
- Abhören verschlüsselter Daten
- Umlleitung des Wählers auf einen gefälschten Wahlserver
- Nachträgliche Veränderung des Wahlergebnisses
- Nachträgliche Verknüpfung des Wählers und der abgegebenen Stimme

30. Wird auch die Hardware zertifiziert?

Die Zertifizierung der Hardware ist zurzeit nicht in Bearbeitung, aber in Zukunft geplant.

31. Welche Möglichkeit haben Fachleute, sich von der Sicherheit der Software zu überzeugen?

Mit z.B. Codereviews, Penetrationstests, allgemeine Tests, Funktionale Tests.

32. Ist der Quellcode offen? Wer kann die aufgezählten Tests durchführen?

Der Quellcode steht allen Interessierten gegenüber offen. In der Vergangenheit wurde hierfür ein NDA unterschrieben und Details der Tests geklärt.

33. Wie wird das Wahlverfahren für die Wähler transparent gemacht?

Mit z.B. FAQs, Sicherheitskonzepten, Beschreibungen, Erklärungen, Gesprächen.
A.8 Befragung des HRZ

Die Befragung des Hochschulrechenzentrums soll Aufschluss über die vorhandene Infrastruktur und die Möglichkeiten zum Aufbau des Open-Source-Wahlsystems Helios an der TU Darmstadt geben.

1. Haben alle Mitglieder der TU Darmstadt (Professoren, Studierende, wissenschaftliche und administrativ-technische Mitarbeiter) ein eindeutiges Identifizierungsmerkmal?

 Alle Beschäftigten und Studierenden haben durch die „TU-ID“ eine digitale Identität. Mit dieser können sich die Mitglieder für die Nutzung der zentralen Dienste authentisieren. Außerdem haben alle Mitglieder auch eine TUD-Card bzw. seit WS 2010/2011 eine Athene-Karte.

2. Welche kryptographischen Funktionen bietet die TUD-Card?
 - Sichere Authentisierung
 - E-Mail/Daten-Signatur
 - E-Mail/Daten-Verschlüsselung (Aktuell nur Mitarbeiter, zukünftig auch optional Studierende)
 - Web Logon
 - Was die einzelnen Einrichtungen sich sonst noch ausdenken, z.B. VPN.

3. Ist die Realisierung von weiteren Funktionen geplant?

 Zum Wintersemester 2010/2011 wurde die alte TUD-Card gegen die neue Athene-Karte getauscht. Diese neue Chipkarte hat die Schlüssellänge von 1024 Bit auf 2048 Bit erhöht und ist damit wieder sicher gemäß der geltenden Empfehlung des Bundesamtes für Informationssicherheit (BSI). Die Funktionen blieben hierbei unverändert.

4. Gibt es Nutzungsstatistiken zur TUD-Card?

 Nein. Es gibt hierfür noch keine Pflichtanwendungen, da die Benutzung der TU-ID (Benutzername/Passwort) bequemer ist.

5. Haben alle Mitglieder der TU Darmstadt Zugang zum Internet und eine E-Mail-Adresse?

6. Wie erfolgt der Login zum geschützten Bereich der TUD-Homepage?

 Hier wird zentral die TU-ID verwendet (Internet, VPN, WLAN, Webseite inkl. geschützter Seiten). Alternativ geht am Web Single Sign-On auch die TUD-Card/Athene-Karte (Webseiten, Webanwendungen).

7. In welcher Form liegt das elektronische Wählerverzeichnis vor und welche Informationen enthält es?

 Im zentralen LDAP des HRZ ist der Wahlfachbereich pro Student/-in hinterlegt. Damit ergibt sich aus diesem Verzeichnis das entsprechende Wählerverzeichnis. Bei der eigentlichen Wahl wird zusätzlich in eine SQL-Datenbank die Stimmabgabe quittiert, so dass keine Mehrfachabgaben möglich sind.
8. Kann bei der Durchführung von Internetwahlen auf das elektronische Wählerverzeichnis zugegriffen werden?

Ja, das Identitätsmanagementsystem (IDM) des HRZ hat alle Beschäftigten und Studierenden der TU Darmstadt erfasst. Bei den Studierenden sind die Verzeichnisse mittlerweile elektronisch gepflegt, so dass die Wähler elektronisch registriert werden. Dies ist auch bei den Beschäftigten geplant.

9. An der UCL wurde das Open-Source-Internetwahlsystem Helios unter Verwendung eines zentralen Authentifizierungsdienstes aufgebaut. Ist dies auch an der TU Darmstadt möglich?

10. Kann dabei auch sichergestellt werden, dass Authentisierungsserver und Urnenserver von unterschiedlichen Administratoren verwaltet werden?

Ja, das könnte man sicherstellen. Ggf. könnte man hier den eingesetzten SSO-Server sogar so programmieren, dass er die Authentisierung macht und anschließend nur ein Success und einen Wahlfachbereich ausliefert. Problem ist hier der Vermerk, dass schon gewählt wurde.

11. Wie werden die Wählerlisten erstellt?

Als Objekt im LDAP oder als Einträge in einer Datenbank. Wichtig ist hierbei nicht die E-Mail-Adresse, sondern ein eindeutiger Identifier (in diesem Fall die TU-ID) und der Wahlfachbereich.

12. Welche einmaligen Kosten fallen für den Aufbau von Helios an?

Kosten kann ich nicht schätzen. Man benötigt in der VM entsprechende Hosts. Der größte Posten ist aber Software und Personal für den Betrieb. Ich denke zwei VM Maschinen ca. 1.000 € und drei Personenmonate, um das Ganze aufzusetzen.

13. Wieso werden 2 VM Maschinen benötigt und wie setzen sich die drei Personenmonate zusammen?

Zwei VM Maschinen werden für die Trennung von Authentisierungs- und Wahlurnensystem benötigt, niemals gemeinsame Logs.

Der Aufbau läuft wie folgt ab:
System installieren, System-Updates konfigurieren (Automatische Security Checks/Updates des Systems), Backup einrichten, Überwachungssysteme anbinden, Applikationssoftware installieren (Datenbank, Webserver, PHP, ...), eigentliche Software installieren (Helios), Software anpassen, Netzverbindungen einrichten / Zertifikate checken... Das ganze Testen und vor allem sauber Dokumentieren. Jetzt das ganze (nochmals von Null an) für einen Betriebszustand gemäß der erstellten Dokumentation aufsetzen. (Nachweispflichten etc werden dadurch erfüllt).
14. Welche jährlichen Kosten fallen für den Betrieb der Wahlserver an?

15. Wie wird das Wahlsystem gegen Ausfälle und Angriffe abgesichert?

Hier müsste man eine saubere Risikoanalyse machen und dann schauen, Ausfall → Backup, Angriff → Firewall, Systemhärten etc.

16. Wie ist die Arbeitsteilung zwischen Wahlamt und HRZ? Wer steuert die Wahl?

Das HRZ sollte zwecks Sicherstellung des Ergebnisses keinen Zugriff auf das Wahlsystem haben. Die Steuerung der Wahl obliegt dem Wahlamt.
Die echten Namen der Wahlbewerber wurden durch frei erfundene Namen ersetzt.
TECHNISCHE UNIVERSITÄT DARMSTADT

Anleitung zur Briefwahl

1. Kennzeichnen Sie den/die Stimmzettel persönlich und unter Wahrung des Wahlgeheimnisses.
4. Unterzeichnen Sie die “Erklärung zur Briefwahl” (unten auf dem Wahlschein).
5. Legen Sie a) den verschlossenen Wahlumschlag und
 b) den Wahlschein
 in den weißen Briefumschlag (Wahlbrief).

Der Wahlvorstand
Alle Internetquellen wurden am 08.02.2011 geprüft und waren verfügbar.

Links:

- Anleitung zur Polyas-Testwahl
 https://secure.micromata.de/polyas/help.jsp

- ARGE Daten
 http://www.argedaten.at

- Austausch der Wahlsoftware eines Nedap-Wahlgeräts in einer Minute
 http://chaosradio.ccc.de/ctv095.html

- Bedienungsanleitung für die Nedap-Wahlgeräte ESD1 und ESD2
 [http://www.wahlrecht.de/doku/doku/20070928_bedin][dungsanleitung.pdf](http://www.wahlrecht.de/doku/doku/20070928_biedie[ningsanleitung.pdf)

- Bekanntmachung über die Freigabe von Helios v3

- Bericht vom TNO

- Bericht zur Internetwahl an der FH Hannover

- Beschreibung der TU-ID
 http://www.hrz.tu-darmstadt.de/dienste/id/tuid/index.de.jsp

- Beschreibung der Wahlgeräte ESD1, ESD2 und ES3B vom CCCB
 https://berlin.ccc.de/wiki/Wahlcomputer

- Beschreibung des Anoto Prinzips

- Bestellschein für UniWahl4 samt Preisliste

- Bingo Voting
 http://www.bingovoting.de

- BSI
 https://www.bsi.bund.de

- Chaos Computer Club Berlin
 https://berlin.ccc.de/wiki/Hauptseite
- Common Criteria
 http://www.commoncriteriaportal.org

- dotVote
 http://www.dotvote.de

- DS850 von ES&S

- Electric Paper
 http://www.electricpaper.de

- EvaSys / EvaSys Education
 http://www.electricpaper.de/produkte/evasys-education.html

- ES&S
 http://www.essvote.com

- FriCard
 http://www.fricard.de

- Gremienwahl mit UniWahl4
 http://www.electricpaper.de/produkte/evasys-education/erweiterungen/gremienwahlen.html

- Handbuch zur automatischen Stimmenauszählung mit VividForms und UniWahl4

- Hart InterCivic
 http://www.hartic.com

- Helios
 http://heliosvoting.org

- Helios-Beschreibung durch die Entwickler
 http://heliosvoting.org/about-us

- Homepage des Wahlamts
 http://www.intern.tu-darmstadt.de/dez_ii/wahlamt_1/wahlamt.de.jsp

- HSG Wahlsysteme
 http://www.wahlsysteme.de

- iVotronic Real Time Audit Log

- Karlsruher Institut für Technologie (KIT)
 http://www.kit.edu

- Liste der UniWahl4-Installationen
• Micromata
 http://www.micromata.de

• Nedap Election Systems
 http://www.election-systems.eu

• Polyas
 http://www.polyas.de

• Polyas University
 http://www.polyas.de/de/produkte-und-leistungen/Uniwahlen.html

• Preisvergleich des Canon DR-6010C bei idealo
 http://www.ideo.de/preisvergleich/OffersOfProduct/1794093_dr-6010c-canon.html

• Pressemitteilung des freien zusammenschlusses von studentInnenschaften (fzs) zur Änderung des Hessischen Hochschulgesetzes vom 26.06.2004
 http://www.fzs.de/presse/875.html

• Pressemitteilungen und Veröffentlichungen der HSG Wahlsysteme:
 # 1: http://www.wahlsysteme.de/Wahlnachrichten/2009/09-03-09_Karlsruhe_stopp_Wahlcomputer.pdf

• Wahlen an der Princeton University, USA

• Protokoll der Sitzung des Studierendenparlaments vom 08.07.2008, Universität Karlsruhe

• Safevote
 http://www.safevote.com

• Scytl
 http://www.scytl.com

• Single Sign On an der TU Darmstadt
 http://www.hrz.tu-darmstadt.de/dienste/id/sso/index.de.jsp

• Smartmatic
 http://www.smartmatic.com

• Technik von dotVote
 http://www.dotvote.de/technik.htm
• Technische Daten des Canon DR-6010C

• UniWahl4
 http://www.uniwahl-soft.de

• Verfahren nach Hare-Niemeyer
 http://www.wahlrecht.de/verfahren/hare-niemeyer.html

• Verfahren nach Sainte-Leguë
 http://www.wahlrecht.de/verfahren/stlague.html

• Vorstellung der FriCard am KIT
 http://www.studiumundbehinderung.kit.edu/69.php

• Wahlvorgang mit dotVote
 http://www.dotvote.de/wahlvorgang.htm

• Webseite zur ÖH-Wahl 2009

• Wij vertrouwen stemcomputers niet
 http://wijvertrouwenstemcomputersniet.nl

Bilder:

• Wahlgerät vom Typ Nedap ESD1
 http://www.ptb.de/de/publikationen/jahresberichte/jb2001/nachrdjahres/ndj09d.html

• Wahlgerät mit Touchscreen und Belegdrucker
 http://usablesecurity.com/?p=52

• Wahlsanncer mit integrierter Urne
 http://www.hartic.com/pages/215

• Digitaler Wahlstift
 http://www.golem.de/0603/43884.html
Literaturverzeichnis

Adida, Ben; de Marneffe, Olivier; Pereira, Olivier; Quisquater, Jean-Jacques (2009): Electing a University President using Open-Audit Voting: Analysis of real-world use of Helios. Electronic Voting Technology/Workshop on Trustworthy Elections.

Möller, Klaus; Kelm, Stefan (2000): Distributed Denial-of-Service Angriffe (DDoS). In: Datenschutz und Datensicherheit, Band 24, Nr. 5, S. 292-293.

StSTUD (2009): Satzung der Studierendenschaft der TU Darmstadt vom 09. Februar 2010,
zuletzt geändert am 30. September 2010.

Van Hoof, Joris; Gosselt, Jordy; de Jong, Menno (2007): The Reliability and Usability of
the Nedap Voting Machine – A Pilot Study. University of Twente, Faculty of Behavioural

Procedures to Support Responsible Election Authorities. In: Lecture Notes in Business
Information Processing, Band 30. Springer-Verlag; Berlin, Heidelberg.

Volkamer, Melanie; Grimm, Rüdiger (2006): Multiple Casts in Online Voting: Analyzing

Volkamer, Melanie; Krimmer, Robert (2006a): Die Online-Wahl auf dem Weg zum

Volkamer, Melanie; Schryen, Guido; Langer, Lucie; Schmidt, Axel; Buchmann, Johannes
Informatik.

System Helios.

Richard Boorberg Verlag; Stuttgart, München, Hannover, Berlin, Weimar, Dresden.

Wilm, Peter (2009): Technische Anforderungen an staatliche Internetwahlen. In:
Datenschutz und Datensicherheit, Band 33, Nr. 2, S. 79-83. Vieweg Verlag.

Wilm, Peter (2004): Elektronische Wahlen – Eine Informationsbroschüre für den

Wolf, Andreas (2008a): Bingo!. In: Fachschaft Elektro- und Informationstechnik –
Universität Karlsruhe: Der Wahl-Funke, Nr. 149, S. 10.
http://fachschaft.etec.uni-karlsruhe.de/images/stories/Funke/funke_149.pdf

Informationstechnik – Universität Karlsruhe: Der Funke, Nr. 150, S. 7-8.
http://fachschaft.etec.uni-karlsruhe.de/images/stories/Funke/funke_150.pdf
